Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2021, Vol. 15 Issue (2): 330-339   https://doi.org/10.1007/s11705-020-1929-6
  本期目录
Improved “cure on demand” of aromatic bismaleimide with thiol triggered by retro-Diels-Alder reaction
Vincent Froidevaux, Mélanie Decostanzi, Abdelatif Manseri, Sylvain Caillol, Bernard Boutevin, Rémi Auvergne()
Institut Charles Gerhardt Montpellier, UMR 5253-CNRS, Université de Montpellier, ENSCM, 34296 Montpellier Cedex 5, France
 全文: PDF(678 KB)   HTML
Abstract

This study focuses on the synthesis of new liquid aromatic bismaleimide monomers in order to improve self-curing on demand (SCOD) systems previously based on aliphatic bismaleimides. These SCOD systems are based on Diels-Alder (DA)/retro-DA reactions. The syntheses of new different aromatic bismaleimides with ester and amide bonds are presented. These maleimides have been protected using DA reaction and characterized by 1H NMR analysis to determine protection rate and diastereomer ratios. The retro-DA reactions of both aromatic and aliphatic DA adducts in presence of thiol molecules were studied. Kinetic analysis was monitored by 1H NMR and compared to model study. Finally, both aromatic and aliphatic bismaleimides-based polymers were synthesized with 2-mercaptoethyl ether and thermal properties of polymers were compared. The glass transition temperature values ranged from –20 °C to 14 °C and very good thermal stabilities were observed (up to 300 °C).

Key wordsthiol-ene polymerization    self-curing on demand    thia-michael addition    Diels-Alder    maleimide
收稿日期: 2019-12-19      出版日期: 2021-03-10
Corresponding Author(s): Rémi Auvergne   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2021, 15(2): 330-339.
Vincent Froidevaux, Mélanie Decostanzi, Abdelatif Manseri, Sylvain Caillol, Bernard Boutevin, Rémi Auvergne. Improved “cure on demand” of aromatic bismaleimide with thiol triggered by retro-Diels-Alder reaction. Front. Chem. Sci. Eng., 2021, 15(2): 330-339.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-020-1929-6
https://academic.hep.com.cn/fcse/CN/Y2021/V15/I2/330
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Hardener y x + z Physical form Yield/% a)
BM Al ED-600 9 3.6 Liq. 64
BM Ar ED-600 9 3.6 Liq. 63
BM Ar ED-900 12.5 6 Liq. 62
BM Ar L35 16 21 Liq. 56
BM Ar Terat-650 8 Liq. (T>25 °C) 60
Tab.1  
Maleimide Functions of spacer Protection rate/% Diastereomers/%
Endo Exo
BM Al ED-600 Ether 95 80 20
BM Ar ED-600 Amide 94 67 33
BM Ar ED-900 Amide 89 54 46
BM Ar L35 Ester 93 51 49
BM Ar Terat-650 Ester 93 46 54
Tab.2  
Fig.14  
Fig.15  
Materials Tg/°C Td5%/°C a) Char yield/%
BMI-Al+ 2-MEE –20 304 12
BMI-Ar+ 2-MEE 14 358 25
Tab.3  
1 Y Zhang, A A Broekhuis, F Picchioni. Thermally self-healing polymeric materials: the next step to recycling thermoset polymers? Macromolecules, 2009, 42(6): 1906–1912
https://doi.org/10.1021/ma8027672
2 A Gandini. The application of the Diels-Alder reaction to polymer syntheses based on furan/maleimide reversible couplings. Polímeros, 2005, 15(2): 95–101
https://doi.org/10.1590/S0104-14282005000200007
3 M W Keller, J P Pascault, R J J Williams. Self-healing epoxy composites. In: Epoxy Polymers. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2010, 325–344
4 D A Wicks, Z W Wicks Jr. Blocked isocyanates. III: Part A. Mechanisms and chemistry. Progress in Organic Coatings, 1999, 36(3): 148–172
https://doi.org/10.1016/S0300-9440(99)00042-9
5 J F Pazos. Polymers coupled by nitroso groups. US Patent, 3872057A, 1975-05-18
6 D Montarnal, M Capelot, F Tournilhac, L Leibler. Silica-like malleable materials from permanent organic networks. Science, 2011, 334(6058): 965–968
https://doi.org/10.1126/science.1212648
7 J Gordon. Additions and corrections-fused organic salts. III. Chemical stability of molten tetra-n-alkylammonium salts. Medium effects on thermal R4N+X‒-decomposition. RBr+ I‒ = RI+ Br‒ equilibrium constant in fused salt medium. Journal of Organic Chemistry, 1965, 30(12): 4396
https://doi.org/10.1021/jo01023a634
8 E C F Ko, K T Leffek. Studies on the decomposition of tetra-alkylammonium salts in solution. V. Rates and activation parameters of salts containing substituted-benzyl or other active groups. Canadian Journal of Chemistry, 1972, 50(9): 1297–1302
https://doi.org/10.1139/v72-203
9 K T Leffek, A F Matheson. Secondary kinetic isotope effects in bimolecular nucleophilic substitutions. VI. Effect of α and β deuteration of alkyl halides in their Menschutkin reactions with pyridine in nitrobenzene. Canadian Journal of Chemistry, 1972, 50(7): 986–991
https://doi.org/10.1139/v72-155
10 K B Wagener, L P Engle, M H Woodard. Thermally reversible polymer linkages. 1. Model studies of the azlactone ring. Macromolecules, 1991, 24(6): 1225–1230
https://doi.org/10.1021/ma00006a001
11 K B Wagener, L P Engle. Thermally reversible polymer linkages. 3. Covalently crosslinked poly(azlactone). Macromolecules, 1991, 24(26): 6809–6815
https://doi.org/10.1021/ma00026a001
12 R Gheneim, C Perez-Berumen, A Gandini. Diels-Alder reactions with novel polymeric dienes and dienophiles: synthesis of reversibly cross-linked elastomers. Macromolecules, 2002, 35(19): 7246– 7253
https://doi.org/10.1021/ma020343c
13 O Diels, K Alder. Syntheses in the hydroaromatic series. Justus Liebig’s Annals of Chemistry, 1928, 460(1): 98–122 (in German)
https://doi.org/10.1002/jlac.19284600106
14 A Gandini. The furan/maleimide Diels-Alder reaction: a versatile click-unclick tool in macromolecular synthesis. Progress in Polymer Science, 2013, 38(1): 1–29
https://doi.org/10.1016/j.progpolymsci.2012.04.002
15 W F Bailey, N M Wachter-Jurcsak, M R Pineau, T V Ovaska, R R Warren, C E Lewis. Acetylenic vinyllithiums: consecutive cycloisomerization-[4+2] cycloaddition reactions. Journal of Organic Chemistry, 1996, 61(23): 8216–8228
https://doi.org/10.1021/jo961437l
16 W R Roush, R J Sciotti. Enantioselective total synthesis of (-)-chlorothricolide via the tandem inter- and intramolecular Diels-Alder reaction of a hexaenoate intermediate. Journal of the American Chemical Society, 1998, 120(30): 7411–7419
https://doi.org/10.1021/ja980611f
17 A Javadi, H S Mehr, M Sobani, M D Soucek. Cure-on-command technology: a review of the current state of the art. Progress in Organic Coatings, 2016, 100: 2–31
https://doi.org/10.1016/j.porgcoat.2016.02.014
18 K Ishizu, M Makino, N Hatoyama, S Uchida. Emulsion-induced ordered microporous films using amphiphilic poly(ethylene oxide)-block-poly(n-butyl isocyanate) block copolymers. Journal of Applied Polymer Science, 2008, 108(6): 3753–3759
https://doi.org/10.1002/app.28030
19 Y Ji, J Kim, J Y Bae. Flame-retardant ABS resins from novel phenyl isocyanate blocked novolac phenols and triphenyl phosphate. Journal of Applied Polymer Science, 2006, 102(1): 721–728
https://doi.org/10.1002/app.23258
20 J Gironès, M T B Pimenta, F Vilaseca, A J F Carvalho, P Mutjé, A A S Curvelo. Blocked diisocyanates as reactive coupling agents: application to pine fiber-polypropylene composites. Carbohydrate Polymers, 2008, 74(1): 106–113
https://doi.org/10.1016/j.carbpol.2008.01.026
21 G Sankar, A S Nasar. Cure-reaction kinetics of amine-blocked polyisocyanates with alcohol using hot-stage fourier transform infrared spectroscopy. Journal of Applied Polymer Science, 2008, 109(2): 1168–1176
https://doi.org/10.1002/app.28172
22 N Moszner, F Zeuner, U Salz, V Rheinberger. Reaction behaviour of monomeric B-Ketoesters. Polymer Bulletin, 1994, 33(1): 43–49
https://doi.org/10.1007/BF00313472
23 M Viganò, M Levi, S Turri, M Chiari, F Damin. New copolymers of N,N-dimethylacrylamide with blocked isocyanates for oligonucleotide immobilization in DNA microarray technology. Polymer, 2007, 48(14): 4055–4062
https://doi.org/10.1016/j.polymer.2007.05.019
24 L Ubaghs, H Keul, H Höcker. Novel intramolecular blocked isocyanates as stable one-component systems for poly(urea urethane)s. Polymer, 2005, 46(5): 1459–1465
https://doi.org/10.1016/j.polymer.2004.12.028
25 C Lou, J Gu, M Di, L Ma, Y Wang, X Liu. Synthesis and characterization of trichlorophenol-blocked polyaryl polyisocyanate. Iranian Polymer Journal, 2011, 20(3): 247–255
26 V Froidevaux, M Borne, E Laborbe, R Auvergne, A Gandini, B Boutevin. Study of the Diels-Alder and retro-Diels-Alder reaction between furan derivatives and maleimide for the creation of new materials. RSC Advances, 2015, 5(47): 37742–37754
https://doi.org/10.1039/C5RA01185J
27 J Canadell, H Fischer, G De With, R A T M van Benthem. Stereoisomeric effects in thermo-remendable polymer networks based on Diels-Alder crosslink reactions. Journal of Polymer Science. Part A, Polymer Chemistry, 2010, 48(15): 3456–3467
https://doi.org/10.1002/pola.24134
28 J W Chan, C E Hoyle, A B Lowe, M Bowman. Nucleophile-initiated thiol-Michael reactions: effect of organocatalyst, thiol, and ene. Macromolecules, 2010, 43(15): 6381–6388
https://doi.org/10.1021/ma101069c
29 S Billiet, W Van Camp, X K D Hillewaere, H Rahier, F E Du Prez. Development of optimized autonomous self-healing systems for epoxy materials based on maleimide chemistry. Polymer, 2012, 53(12): 2320–2326
https://doi.org/10.1016/j.polymer.2012.03.061
30 V Froidevaux, C Negrell, E Laborbe, R Auvergne, B Boutevin. Thermosetting material by a thermo responsive cross-linking using retroDiels-Alder and, in situ, Thia-Michael reactions. European Polymer Journal, 2015, 69: 510–522
https://doi.org/10.1016/j.eurpolymj.2015.03.044
31 E Dolci, V Froidevaux, C Joly-Duhamel, R Auvergne, B Boutevin, S Caillol. Maleimides as a building block for the synthesis of high performance polymers. Polymer Reviews (Philadelphia, Pa.), 2016, 56(3): 512–556
https://doi.org/10.1080/15583724.2015.1116094
32 D Herr, L Sridhar, A Slark. Thermally reversible hot melt adhesive composition containing multifunctional diene and dienophile compounds. US Patent, 20120082840 A1, 2012-05-04
33 B Fache, B Gallot, M P Gelin, J C Milano, Q T Pham. Synthesis and thermal properties of bismaleimides with mesogen aromatic amide-ester and flexible polymethylenic group. Journal of Applied Polymer Science, 2013, 127(5): 3798–3813
https://doi.org/10.1002/app.37659
34 B Fache, S Mekkid, J C Milano, J L. Vernet Synthesis and thermal resistance of bisnadimides and bismaleimides with flexible grouping of polyethylene glycol type. European Polymer Journal, 1998, 34(11): 1621–1627
https://doi.org/10.1016/S0014-3057(98)00020-2
35 C Hansch, A Leo, R W Taft. A survey of Hammett substituent constants and resonance and field parameters. Chemical Reviews, 1991, 91(2): 165–195
https://doi.org/10.1021/cr00002a004
[1] FCE-19077-OF-FV_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed