Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2021, Vol. 15 Issue (4): 720-754   https://doi.org/10.1007/s11705-020-1992-z
  本期目录
CO2 capture using membrane contactors: a systematic literature review
Sanaa Hafeez1, Tayeba Safdar1, Elena Pallari2, George Manos3, Elsa Aristodemou1, Zhien Zhang4, S. M. Al-Salem5, Achilleas Constantinou1,3,6()
1. Division of Chemical and Energy Engineering, School of Engineering, London South Bank University, London SE1 0AA, UK
2. Medical Research Council Clinical Trials Unit, University College London, London WC1V 6LJ, UK
3. Department of Chemical Engineering, University College London, London WCIE 7JE, UK
4. William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
5. Environment & Life Sciences Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
6. Department of Chemical Engineering Cyprus University of Technology, Limassol 3036, Cyprus
 全文: PDF(4463 KB)   HTML
Abstract

With fossil fuel being the major source of energy, CO2 emission levels need to be reduced to a minimal amount namely from anthropogenic sources. Energy consumption is expected to rise by 48% in the next 30 years, and global warming is becoming an alarming issue which needs to be addressed on a thorough technical basis. Nonetheless, exploring CO2 capture using membrane contactor technology has shown great potential to be applied and utilised by industry to deal with post- and pre-combustion of CO2. A systematic review of the literature has been conducted to analyse and assess CO2 removal using membrane contactors for capturing techniques in industrial processes. The review began with a total of 2650 papers, which were obtained from three major databases, and then were excluded down to a final number of 525 papers following a defined set of criteria. The results showed that the use of hollow fibre membranes have demonstrated popularity, as well as the use of amine solvents for CO2 removal. This current systematic review in CO2 removal and capture is an important milestone in the synthesis of up to date research with the potential to serve as a benchmark databank for further research in similar areas of work. This study provides the first systematic enquiry in the evidence to research further sustainable methods to capture and separate CO2.

Key wordsCO2 capture    preferred reporting items for systematic reviews and meta-analyses    membrane contactor    absorbent
收稿日期: 2020-04-15      出版日期: 2021-06-04
Corresponding Author(s): Achilleas Constantinou   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2021, 15(4): 720-754.
Sanaa Hafeez, Tayeba Safdar, Elena Pallari, George Manos, Elsa Aristodemou, Zhien Zhang, S. M. Al-Salem, Achilleas Constantinou. CO2 capture using membrane contactors: a systematic literature review. Front. Chem. Sci. Eng., 2021, 15(4): 720-754.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-020-1992-z
https://academic.hep.com.cn/fcse/CN/Y2021/V15/I4/720
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
1 H W Schiffer, T Kober, E Panos. World energy council’s global energy scenarios to 2060. Magazine for Energy Industry, 2018, 42(2): 91–102
https://doi.org/10.1007/s12398-018-0225-3
2 T B Johansson, A P Patwardhan, N Nakićenović, L Gomez Echeverri. Global Energy Assessment: Toward A Sustainable Future. Cambridge UK and New York, Laxenburg, Austria: Cambridge University Press, and the International Institute for Applied Systems Analysis, 2012, 99–1257
3 R Carapellucci, A Milazzo. Membrane systems for CO2 capture and their integration with gas turbine plants. Proceedings of the Institution of Mechanical Engineers. Part A, Journal of Power and Energy, 2003, 217(5): 505–517
https://doi.org/10.1243/095765003322407557
4 P M Cox, R A Betts, C D Jones, S A Spall, I J Totterdell. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 2000, 408(6809): 184–187
https://doi.org/10.1038/35041539
5 E I Koytsoumpa, C Bergins, E Kakaras. The CO2 economy: review of CO2 capture and reuse technologies. Journal of Supercritical Fluids, 2018, 132: 3–16
https://doi.org/10.1016/j.supflu.2017.07.029
6 R Stanger, T Wall, R Spörl, M Paneru, S Grathwohl, M Weidmann, G Scheffknecht, D McDonald, K Myöhänen, J Ritvanen, S Rahiala, T Hyppänen, J Mletzko, A Kather, S Santos. Oxyfuel combustion for CO2 capture in power plants. International Journal of Greenhouse Gas Control, 2015, 40: 55–125
https://doi.org/10.1016/j.ijggc.2015.06.010
7 D Jansen, M Gazzani, G Manzolini, E Van Dijk, M Carbo. Pre-combustion CO2 capture. International Journal of Greenhouse Gas Control, 2015, 40: 167–187
https://doi.org/10.1016/j.ijggc.2015.05.028
8 Working Group III of the Intergovernmental Panel on Climate Change. IPCC Special Report on Carbon Dioxide Capture and Storage. Metz B, Davidson O, De Coninck H, eds. New York: Cambridge University Press, 2005, 431
9 Y Wang, L Zhao, A Otto, M Robinius, D Stolten. A review of post-combustion CO2 capture technologies from coal-fired power plants. Energy Procedia, 2017, 114: 650–665
https://doi.org/10.1016/j.egypro.2017.03.1209
10 E Nagy. Basic Equations of Mass Transport Through A Membrane Layer. Amsterdam: Elsevier, 2018, 11–87
11 K Khulbe, T Matsuura. Removal of heavy metals and pollutants by membrane adsorption techniques. Applied Water Science, 2018, 8(1): 19
https://doi.org/10.1007/s13201-018-0661-6
12 P Luis, T van Gerven, B van der Bruggen. Recent developments in membrane-based technologies for CO2 capture. Progress in Energy and Combustion Science, 2012, 38(3): 419–448
https://doi.org/10.1016/j.pecs.2012.01.004
13 S Hafeez, S Al-Salem, A Constantinou. Membrane reactors for renewable fuel production and their environmental benefits, in membranes for environmental applications. Vol. 42. Switzerland: Springer, 2020, 383–411
14 J L Li, B H Chen. Review of CO2 absorption using chemical solvents in hollow fiber membrane contactors. Separation and Purification Technology, 2005, 41(2): 109–122
https://doi.org/10.1016/j.seppur.2004.09.008
15 X Sun, A Constantinou, A Gavriilidis. Stripping of acetone from isopropanol solution with membrane and mesh gasliquid contactors. Chemical Engineering and Processing: Process Intensification, 2011, 50(10): 991–997
https://doi.org/10.1016/j.cep.2011.06.004
16 A Constantinou, F Ghiotto, K F Lam, A Gavriilidis. Stripping of acetone from water with microfabricated and membrane gasliquid contactors. Analyst (London), 2014, 139(1): 266–272
https://doi.org/10.1039/C3AN00963G
17 M Ilyas, W Ahmad, H Khan, S Yousaf, K Khan, S Nazir. Plastic waste as a significant threat to environment—a systematic literature review. Reviews on Environmental Health, 2018, 33(4): 383–406
https://doi.org/10.1515/reveh-2017-0035
18 E Favre. Carbon dioxide recovery from post-combustion processes: can gas permeation membranes compete with absorption? Journal of Membrane Science, 2007, 294(1-2): 50–59
https://doi.org/10.1016/j.memsci.2007.02.007
19 R E Baltus, R M Counce, B H Culbertson, H Luo, D W DePaoli, S Dai, D C Duckworth. Examination of the potential of ionic liquids for gas separations. Separation Science and Technology, 2005, 40(1-3): 525–541
https://doi.org/10.1081/SS-200042513
20 S P Yan, M X Fang, W F Zhang, S Y Wang, Z K Xu, Z Y Luo, K F Cen. Experimental study on the separation of CO2 from flue gas using hollow fiber membrane contactors without wetting. Fuel Processing Technology, 2007, 88(5): 501–511
https://doi.org/10.1016/j.fuproc.2006.12.007
21 D Langevin, M Pinoche, E Se, M Me, R Roux. CO2 facilitated transport through functionalized cation-exchange membranes. Journal of Membrane Science, 1993, 82(1-2): 51–63
https://doi.org/10.1016/0376-7388(93)85092-B
22 K Li, W K Teo. Use of permeation and absorption methods for CO2 removal in hollow fibre membrane modules. Separation and Purification Technology, 1998, 13(1): 79–88
https://doi.org/10.1016/S1383-5866(97)00059-2
23 H Suzuki, K Tanaka, H Kita, K Okamoto, H Hoshino, T Yoshinaga, Y Kusuki. Preparation of composite hollow fiber membranes of poly(ethylene oxide)-containing polyimide and their CO2/N2 separation properties. Journal of Membrane Science, 1998, 146(1): 31–37
https://doi.org/10.1016/S0376-7388(98)00081-7
24 Y Tokuda, E Fujisawa, N Okabayashi, N Matsumiya, K Takagi, H Mano, K Haraya, M Sato. Development of hollow fiber membranes for CO2 separation. Energy Conversion and Management, 1997, 38: S111–S116
https://doi.org/10.1016/S0196-8904(96)00255-5
25 Y Gong, Z Wang, S Wang. Experiments and simulation of CO2 removal by mixed amines in a hollow fiber membrane module. Chemical Engineering and Processing: Process Intensification, 2006, 45(8): 652–660
https://doi.org/10.1016/j.cep.2006.01.009
26 A F Ismail, N Yaacob. Performance of treated and untreated asymmetric polysulfone hollow fiber membrane in series and cascade module configurations for CO2/CH4 gas separation system. Journal of Membrane Science, 2006, 275(1-2): 151–165
https://doi.org/10.1016/j.memsci.2005.09.014
27 G Kapantaidakis, G Koops, M Wessling, S Kaldis, G Sakellaropoulos. CO2 plasticization of polyethersulfone/polyimide gas-separation membranes. AIChE Journal. American Institute of Chemical Engineers, 2003, 49(7): 1702–1711
https://doi.org/10.1002/aic.690490710
28 L Dae-Hwan, K Hyung-Taek. Simulation study of CO2 separation process by using hollow fiber membrane. Preprints of Papers-American Chemical Society, Division of Fuel Chemistry, 2004, 49(2): 829–830
29 Y Lee, R D Noble, B Y Yeom, Y I Park, K H Lee. Analysis of CO2 removal by hollow fiber membrane contactors. Journal of Membrane Science, 2001, 194(1): 57–67
https://doi.org/10.1016/S0376-7388(01)00524-5
30 L Liu, A Chakma, X Feng. CO2/N2 separation by poly(ether block amide) thin film hollow fiber composite membranes. Industrial & Engineering Chemistry Research, 2005, 44(17): 6874–6882
https://doi.org/10.1021/ie050306k
31 J J Qin, T S Chung, C Cao, R Vora. Effect of temperature on intrinsic permeation properties of 6FDA-Durene/1,3-phenylenediamine (mPDA) copolyimide and fabrication of its hollow fiber membranes for CO2/CH4 separation. Journal of Membrane Science, 2005, 250(1-2): 95–103
https://doi.org/10.1016/j.memsci.2004.10.021
32 M Teramoto, S Kitada, N Ohnishi, H Matsuyama, N Matsumiya. Separation and concentration of CO2 by capillary-type facilitated transport membrane module with permeation of carrier solution. Journal of Membrane Science, 2004, 234(1-2): 83–94
https://doi.org/10.1016/j.memsci.2003.12.023
33 R Wang, D Li, D Liang. Modeling of CO2 capture by three typical amine solutions in hollow fiber membrane contactors. Chemical Engineering and Processing: Process Intensification, 2004, 43(7): 849–856
https://doi.org/10.1016/S0255-2701(03)00105-3
34 R Wang, H Zhang, P Feron, D Liang. Influence of membrane wetting on CO2 capture in microporous hollow fiber membrane contactors. Separation and Purification Technology, 2005, 46(1-2): 33–40
https://doi.org/10.1016/j.seppur.2005.04.007
35 H M Shim, J S Lee, H Y Wang, S H Choi, J H Kim, H T Kim. Modeling and economic analysis of CO2 separation process with hollow fiber membrane modules. Korean Journal of Chemical Engineering, 2007, 24(3): 537–541
https://doi.org/10.1007/s11814-007-0095-6
36 H Y Zhang, R Wang, D T Liang, J H Tay. Modeling and experimental study of CO2 absorption in a hollow fiber membrane contactor. Journal of Membrane Science, 2006, 279(1-2): 301–310
https://doi.org/10.1016/j.memsci.2005.12.017
37 M Al Marzouqi, M H El Naas, S A Marzouk, N Abdullatif. Modeling of chemical absorption of CO2 in membrane contactors. Separation and Purification Technology, 2008, 62(3): 499–506
https://doi.org/10.1016/j.seppur.2008.02.009
38 M H Al Marzouqi, M H El Naas, S A Marzouk, M A Al Zarooni, N Abdullatif, R Faiz. Modeling of CO2 absorption in membrane contactors. Separation and Purification Technology, 2008, 59(3): 286–293
https://doi.org/10.1016/j.seppur.2007.06.020
39 M H El Naas, M Al Marzouqi, S A Marzouk, N Abdullatif. Evaluation of the removal of CO2 using membrane contactors: membrane wettability. Journal of Membrane Science, 2010, 350(1-2): 410–416
https://doi.org/10.1016/j.memsci.2010.01.018
40 R Faiz, M Al Marzouqi. Mathematical modeling for the simultaneous absorption of CO2 and H2S using MEA in hollow fiber membrane contactors. Journal of Membrane Science, 2009, 342(1-2): 269–278
https://doi.org/10.1016/j.memsci.2009.06.050
41 P Ji, Y Cao, H Zhao, G Kang, X Jie, D Liu, J Liu, Q Yuan. Preparation of hollow fiber poly (N,N-dimethylaminoethyl methacrylate)-poly(ethylene glycol methyl ether methyl acrylate)/polysulfone composite membranes for CO2/N2 separation. Journal of Membrane Science, 2009, 342(1-2): 190–197
https://doi.org/10.1016/j.memsci.2009.06.038
42 P Keshavarz, J Fathikalajahi, S Ayatollahi. Analysis of CO2 separation and simulation of a partially wetted hollow fiber membrane contactor. Journal of Hazardous Materials, 2008, 152(3): 1237–1247
https://doi.org/10.1016/j.jhazmat.2007.07.115
43 A Kumar, X Yuan, A K Sahu, J Dewulf, S J Ergas, H Van Langenhove. A hollow fiber membrane photo-bioreactor for CO2 sequestration from combustion gas coupled with wastewater treatment: a process engineering approach. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2010, 85(3): 387–394
https://doi.org/10.1002/jctb.2332
44 J G Lu, Y Ji, H Zhang, M D Chen. CO2 capture using activated amino acid salt solutions in a membrane contactor. Separation Science and Technology, 2010, 45(9): 1240–1251
https://doi.org/10.1080/01496391003775865
45 J G Lu, Y F Zheng, M D Cheng. Membrane contactor for CO2 absorption applying amino-acid salt solutions. Desalination, 2009, 249(2): 498–502
https://doi.org/10.1016/j.desal.2009.04.007
46 A Mansourizadeh, A F Ismail. Effect of LiCl concentration in the polymer dope on the structure and performance of hydrophobic PVDF hollow fiber membranes for CO2 absorption. Chemical Engineering Journal, 2010, 165(3): 980–988
https://doi.org/10.1016/j.cej.2010.10.034
47 A Mansourizadeh, A F Ismail, M Abdullah, B Ng. Preparation of polyvinylidene fluoride hollow fiber membranes for CO2 absorption using phase-inversion promoter additives. Journal of Membrane Science, 2010, 355(1-2): 200–207
https://doi.org/10.1016/j.memsci.2010.03.031
48 A Mansourizadeh, A F Ismail, T Matsuura. Effect of operating conditions on the physical and chemical CO2 absorption through the PVDF hollow fiber membrane contactor. Journal of Membrane Science, 2010, 353(1-2): 192–200
https://doi.org/10.1016/j.memsci.2010.02.054
49 S A Marzouk, M H Al-Marzouqi, M H El-Naas, N Abdullatif, Z M Ismail. Removal of carbon dioxide from pressurized CO2CH4 gas mixture using hollow fiber membrane contactors. Journal of Membrane Science, 2010, 351(1-2): 21–27
https://doi.org/10.1016/j.memsci.2010.01.023
50 M Sandru, T J Kim, M B Hägg. High molecular fixed-site-carrier PVAm membrane for CO2 capture. Desalination, 2009, 240(1-3): 298–300
https://doi.org/10.1016/j.desal.2008.01.053
51 K Simons, K Nijmeijer, M Wessling. Gasliquid membrane contactors for CO2 removal. Journal of Membrane Science, 2009, 340(1-2): 214–220
https://doi.org/10.1016/j.memsci.2009.05.035
52 S Yan, M Fang, W Zhang, W Zhong, Z Luo, K Cen. Comparative analysis of CO2 separation from flue gas by membrane gas absorption technology and chemical absorption technology in China. Energy Conversion and Management, 2008, 49(11): 3188–3197
https://doi.org/10.1016/j.enconman.2008.05.027
53 H Y Zhang, R Wang, D T Liang, J H Tay. Theoretical and experimental studies of membrane wetting in the membrane gasliquid contacting process for CO2 absorption. Journal of Membrane Science, 2008, 308(1-2): 162–170
https://doi.org/10.1016/j.memsci.2007.09.050
54 S Boributh, S Assabumrungrat, N Laosiripojana, R Jiraratananon. Effect of membrane module arrangement of gas-liquid membrane contacting process on CO2 absorption performance: a modeling study. Journal of Membrane Science, 2011, 372(1-2): 75–86
https://doi.org/10.1016/j.memsci.2011.01.034
55 C C Chen, W Qiu, S J Miller, W J Koros. Plasticization-resistant hollow fiber membranes for CO2/CH4 separation based on a thermally crosslinkable polyimide. Journal of Membrane Science, 2011, 382(1-2): 212–221
https://doi.org/10.1016/j.memsci.2011.08.015
56 M Sandru, S H Haukebø, M B Hägg. Composite hollow fiber membranes for CO2 capture. Journal of Membrane Science, 2010, 346(1): 172–186
https://doi.org/10.1016/j.memsci.2009.09.039
57 K Simons, K Nijmeijer, H Mengers, W Brilman, M Wessling. Highly selective amino acid salt solutions as absorption liquid for CO2 capture in gas-liquid membrane contactors. ChemSusChem, 2010, 3(8): 939–947
https://doi.org/10.1002/cssc.201000076
58 H G Jin, S H Han, Y M Lee, Y K Yeo. Modeling and control of CO2 separation process with hollow fiber membrane modules. Korean Journal of Chemical Engineering, 2011, 28(1): 41–48
https://doi.org/10.1007/s11814-010-0317-1
59 S Khaisri, D deMontigny, P Tontiwachwuthikul, R Jiraratananon. CO2 stripping from monoethanolamine using a membrane contactor. Journal of Membrane Science, 2011, 376(1-2): 110–118
https://doi.org/10.1016/j.memsci.2011.04.005
60 S Boributh, W Rongwong, S Assabumrungrat, N Laosiripojana, R Jiraratananon. Mathematical modeling and cascade design of hollow fiber membrane contactor for CO2 absorption by monoethanolamine. Journal of Membrane Science, 2012, 401: 175–189
https://doi.org/10.1016/j.memsci.2012.01.048
61 N Ghasem, M Al-Marzouqi, L Zhu. Preparation and properties of polyethersulfone hollow fiber membranes with O-xylene as an additive used in membrane contactors for CO2 absorption. Separation and Purification Technology, 2012, 92: 1–10
https://doi.org/10.1016/j.seppur.2012.03.005
62 D H Kim, I H Baek, S U Hong, H K Lee. Study on immobilized liquid membrane using ionic liquid and PVDF hollow fiber as a support for CO2/N2 separation. Journal of Membrane Science, 2011, 372(1-2): 346–354
https://doi.org/10.1016/j.memsci.2011.02.025
63 S Kumbharkar, Y Liu, K Li. High performance polybenzimidazole based asymmetric hollow fibre membranes for H2/CO2 separation. Journal of Membrane Science, 2011, 375(1-2): 231–240
https://doi.org/10.1016/j.memsci.2011.03.049
64 S H Lee, J N Kim, W H Eom, Y D Ko, S U Hong, I H Back. Development of water gas shift/membrane hybrid system for precombustion CO2 capture in a coal gasification process. Energy Procedia, 2011, 4: 1139–1146
https://doi.org/10.1016/j.egypro.2011.01.166
65 A Mansourizadeh, A F Ismail. CO2 stripping from water through porous PVDF hollow fiber membrane contactor. Desalination, 2011, 273(2-3): 386–390
https://doi.org/10.1016/j.desal.2011.01.055
66 A Mansourizadeh, A F Ismail. Preparation and characterization of porous PVDF hollow fiber membranes for CO2 absorption: effect of different non-solvent additives in the polymer dope. International Journal of Greenhouse Gas Control, 2011, 5(4): 640–648
https://doi.org/10.1016/j.ijggc.2011.03.009
67 P Nguyen, E Lasseuguette, Y Medina Gonzalez, J Remigy, D Roizard, E Favre. A dense membrane contactor for intensified CO2 gas/liquid absorption in post-combustion capture. Journal of Membrane Science, 2011, 377(1-2): 261–272
https://doi.org/10.1016/j.memsci.2011.05.003
68 M R Sohrabi, A Marjani, S Moradi, M Davallo, S Shirazian. Mathematical modeling and numerical simulation of CO2 transport through hollow-fiber membranes. Applied Mathematical Modelling, 2011, 35(1): 174–188
https://doi.org/10.1016/j.apm.2010.05.016
69 N Ghasem, M Al Marzouqi, N A Rahim. Modeling of CO2 absorption in a membrane contactor considering solvent evaporation. Separation and Purification Technology, 2013, 110: 1–10
https://doi.org/10.1016/j.seppur.2013.03.008
70 R N Hassanlouei, R Pelalak, A Daraei. Wettability study in CO2 capture from flue gas using nano porous membrane contactors. International Journal of Greenhouse Gas Control, 2013, 16: 233–240
https://doi.org/10.1016/j.ijggc.2013.03.018
71 H Y Hwang, S Y Nam, H C Koh, S Y Ha, G Barbieri, E Drioli. The effect of operating conditions on the performance of hollow fiber membrane modules for CO2/N2 separation. Journal of Industrial and Engineering Chemistry, 2012, 18(1): 205–211
https://doi.org/10.1016/j.jiec.2011.11.021
72 R P Lively, M E Dose, L Xu, J T Vaughn, J Johnson, J A Thompson, K Zhang, M E Lydon, J S Lee, L Liu, Z Hu, O Karvan, M J Realff, W J Koros. A high-flux polyimide hollow fiber membrane to minimize footprint and energy penalty for CO2 recovery from flue gas. Journal of Membrane Science, 2012, 423: 302–313
https://doi.org/10.1016/j.memsci.2012.08.026
73 S A Marzouk, M H Al-Marzouqi, M Teramoto, N Abdullatif, Z M Ismail. Simultaneous removal of CO2 and H2S from pressurized CO2-H2S-CH4 gas mixture using hollow fiber membrane contactors. Separation and Purification Technology, 2012, 86: 88–97
https://doi.org/10.1016/j.seppur.2011.10.024
74 R Naim, A F Ismail, A Mansourizadeh. Effect of non-solvent additives on the structure and performance of PVDF hollow fiber membrane contactor for CO2 stripping. Journal of Membrane Science, 2012, 423: 503–513
https://doi.org/10.1016/j.memsci.2012.08.052
75 R Naim, A F Ismail, A Mansourizadeh. Preparation of microporous PVDF hollow fiber membrane contactors for CO2 stripping from diethanolamine solution. Journal of Membrane Science, 2012, 392: 29–37
https://doi.org/10.1016/j.memsci.2011.11.040
76 M Rahbari Sisakht, A F Ismail, T Matsuura. Effect of bore fluid composition on structure and performance of asymmetric polysulfone hollow fiber membrane contactor for CO2 absorption. Separation and Purification Technology, 2012, 88: 99–106
https://doi.org/10.1016/j.seppur.2011.12.012
77 M Rahbari Sisakht, A F Ismail, D Rana, T Matsuura. A novel surface modified polyvinylidene fluoride hollow fiber membrane contactor for CO2 absorption. Journal of Membrane Science, 2012, 415: 221–228
https://doi.org/10.1016/j.memsci.2012.05.002
78 M Rahbari Sisakht, A F Ismail, D Rana, T Matsuura. Effect of novel surface modifying macromolecules on morphology and performance of polysulfone hollow fiber membrane contactor for CO2 absorption. Separation and Purification Technology, 2012, 99: 61–68
https://doi.org/10.1016/j.seppur.2012.08.021
79 S Shirazian, A Marjani, M Rezakazemi. Separation of CO2 by single and mixed aqueous amine solvents in membrane contactors: fluid flow and mass transfer modeling. Engineering with Computers, 2012, 28(2): 189–198
https://doi.org/10.1007/s00366-011-0237-7
80 K Kim, P G Ingole, J Kim, H Lee. Separation performance of PEBAX/PEI hollow fiber composite membrane for SO2/CO2/N2 mixed gas. Chemical Engineering Journal, 2013, 233: 242–250
https://doi.org/10.1016/j.cej.2013.08.030
81 M Mehdipour, M Karami, P Keshavarz, S Ayatollahi. Analysis of CO2 separation with aqueous potassium carbonate solution in a hollow fiber membrane contactor. Energy & Fuels, 2013, 27(4): 2185–2193
https://doi.org/10.1021/ef4000648
82 R Naim, A F Ismail. Effect of fiber packing density on physical CO2 absorption performance in gas-liquid membrane contactor. Separation and Purification Technology, 2013, 115: 152–157
https://doi.org/10.1016/j.seppur.2013.04.045
83 Z Qiao, Z Wang, C Zhang, S Yuan, Y Zhu, J Wang, S Wang. PVAm-PIP/PS composite membrane with high performance for CO2/N2 separation. AIChE Journal. American Institute of Chemical Engineers, 2013, 59(1): 215–228
https://doi.org/10.1002/aic.13781
84 M Rahbari Sisakht, A F Ismail, D Rana, T Matsuura, D Emadzadeh. Effect of SMM concentration on morphology and performance of surface modified PVDF hollow fiber membrane contactor for CO2 absorption. Separation and Purification Technology, 2013, 116: 67–72
https://doi.org/10.1016/j.seppur.2013.05.008
85 S M R Razavi, S M J Razavi, T Miri, S Shirazian. CFD simulation of CO2 capture from gas mixtures in nanoporous membranes by solution of 2-amino-2-methyl-1-propanol and piperazine. International Journal of Greenhouse Gas Control, 2013, 15: 142–149
https://doi.org/10.1016/j.ijggc.2013.02.011
86 J N Shen, C C Yu, G N Zeng, B Van der Bruggen. Preparation of a facilitated transport membrane composed of carboxymethyl chitosan and polyethylenimine for CO2/N2 separation. International Journal of Molecular Sciences, 2013, 14(2): 3621–3638
https://doi.org/10.3390/ijms14023621
87 S M H H Amrei, S Memardoost, A M Dehkordi. Comprehensive modeling and CFD simulation of absorption of CO2 and H2S by MEA solution in hollow fiber membrane reactors. AIChE Journal. American Institute of Chemical Engineers, 2014, 60(2): 657–672
https://doi.org/10.1002/aic.14286
88 H Z Chen, Z Thong, P Li, T S Chung. High performance composite hollow fiber membranes for CO2/H2 and CO2/N2 separation. International Journal of Hydrogen Energy, 2014, 39(10): 5043–5053
https://doi.org/10.1016/j.ijhydene.2014.01.047
89 N Ghasem, M Al Marsouqi, N A Rahim. Modeling and simulation of membrane contactor employed to strip CO2 from rich solvents via COMSOL Multiphysics®. In: Proceedings of the COMSOL Conference. Zurich: COMSL, 2014, 1–5
90 X He, T J Kim, M B Hägg. Hybrid fixed-site-carrier membranes for CO2 removal from high pressure natural gas: membrane optimization and process condition investigation. Journal of Membrane Science, 2014, 470: 266–274
https://doi.org/10.1016/j.memsci.2014.07.016
91 E Kimball, A Al Azki, A Gomez, E Goetheer, N Booth, D Adams, D Ferre. Hollow fiber membrane contactors for CO2 capture: modeling and up-scaling to CO2 capture for an 800 MWe coal power station. Oil & Gas Science and Technology-Revue d’IFP Energies Nouvelles, 2014, 69(6): 1047–1058
https://doi.org/10.2516/ogst/2013165
92 P K Kundu, A Chakma, X Feng. Effectiveness of membranes and hybrid membrane processes in comparison with absorption using amines for post-combustion CO2 capture. International Journal of Greenhouse Gas Control, 2014, 28: 248–256
https://doi.org/10.1016/j.ijggc.2014.06.031
93 S Li, Z Wang, W He, C Zhang, H Wu, J Wang, S Wang. Effects of minor SO2 on the transport properties of fixed carrier membranes for CO2 capture. Industrial & Engineering Chemistry Research, 2014, 53(18): 7758–7767
https://doi.org/10.1021/ie404063r
94 L Wang, Z Zhang, B Zhao, H Zhang, X Lu, Q Yang. Effect of long-term operation on the performance of polypropylene and polyvinylidene fluoride membrane contactors for CO2 absorption. Separation and Purification Technology, 2013, 116: 300–306
https://doi.org/10.1016/j.seppur.2013.05.051
95 Z Wang, M Fang, Y Pan, S Yan, Z Luo. Amine-based absorbents selection for CO2 membrane vacuum regeneration technology by combined absorption–desorption analysis. Chemical Engineering Science, 2013, 93: 238–249
https://doi.org/10.1016/j.ces.2013.01.057
96 Z Wang, M Fang, H Yu, C C Wei, Z Luo. Experimental and modeling study of trace CO2 removal in a hollow-fiber membrane contactor, using CO2-loaded monoethanolamine. Industrial & Engineering Chemistry Research, 2013, 52(50): 18059–18070
https://doi.org/10.1021/ie402264k
97 M Yoshimune, K Haraya. CO2/CH4 mixed gas separation using carbon hollow fiber membranes. Energy Procedia, 2013, 37: 1109–1116
https://doi.org/10.1016/j.egypro.2013.05.208
98 Y Zhao, W W Ho. CO2-selective membranes containing sterically hindered amines for CO2/H2 separation. Industrial & Engineering Chemistry Research, 2012, 52(26): 8774–8782
https://doi.org/10.1021/ie301397m
99 C Ma, W J Koros. Effects of hydrocarbon and water impurities on CO2/CH4 separation performance of ester-crosslinked hollow fiber membranes. Journal of Membrane Science, 2014, 451: 1–9
https://doi.org/10.1016/j.memsci.2013.09.035
100 C Makhloufi, E Lasseuguette, J C Remigy, B Belaissaoui, D Roizard, E Favre. Ammonia based CO2 capture process using hollow fiber membrane contactors. Journal of Membrane Science, 2014, 455: 236–246
https://doi.org/10.1016/j.memsci.2013.12.063
101 A Mansourizadeh, Z Aslmahdavi, A F Ismail, T Matsuura. Blend polyvinylidene fluoride/surface modifying macromolecule hollow fiber membrane contactors for CO2 absorption. International Journal of Greenhouse Gas Control, 2014, 26: 83–92
https://doi.org/10.1016/j.ijggc.2014.04.027
102 A Mansourizadeh, A R Pouranfard. Microporous polyvinylidene fluoride hollow fiber membrane contactors for CO2 stripping: effect of PEG-400 in spinning dope. Chemical Engineering Research & Design, 2014, 92(1): 181–190
https://doi.org/10.1016/j.cherd.2013.06.028
103 S Masoumi, P Keshavarz, Z Rastgoo. Theoretical investigation on CO2 absorption into DEAB solution using hollow fiber membrane contactors. Journal of Natural Gas Science and Engineering, 2014, 18: 23–30
https://doi.org/10.1016/j.jngse.2014.01.015
104 M Rahbari Sisakht, D Rana, T Matsuura, D Emadzadeh, M Padaki, A F Ismail. Study on CO2 stripping from water through novel surface modified PVDF hollow fiber membrane contactor. Chemical Engineering Journal, 2014, 246: 306–310
https://doi.org/10.1016/j.cej.2014.02.082
105 N A Rahim, N Ghasem, M Al Marzouqi. Stripping of CO2 from different aqueous solvents using PVDF hollow fiber membrane contacting process. Journal of Natural Gas Science and Engineering, 2014, 21: 886–893
https://doi.org/10.1016/j.jngse.2014.10.016
106 M A Rezaei, A F Ismail, S A Hashemifard, G Bakeri, T Matsuura. Experimental study on the performance and long-term stability of PVDF/montmorillonite hollow fiber mixed matrix membranes for CO2 separation process. International Journal of Greenhouse Gas Control, 2014, 26: 147–157
https://doi.org/10.1016/j.ijggc.2014.04.021
107 R Carapellucci, L Giordano, M Vaccarelli. Study of a natural gas combined cycle with multi-stage membrane systems for CO2 post-combustion capture. Energy Procedia, 2015, 81: 412–421
https://doi.org/10.1016/j.egypro.2015.12.114
108 M Farjami, A Moghadassi, V Vatanpour. Modeling and simulation of CO2 removal in a polyvinylidene fluoride hollow fiber membrane contactor with computational fluid dynamics. Chemical Engineering and Processing: Process Intensification, 2015, 98: 41–51
https://doi.org/10.1016/j.cep.2015.10.006
109 N Goyal, S Suman, S Gupta. Mathematical modeling of CO2 separation from gaseous-mixture using a hollow-fiber membrane module: physical mechanism and influence of partial-wetting. Journal of Membrane Science, 2015, 474: 64–82
https://doi.org/10.1016/j.memsci.2014.09.036
110 H J Lee, E Magnone, J H Park. Preparation, characterization and laboratory-scale application of modified hydrophobic aluminum oxide hollow fiber membrane for CO2 capture using H2O as low-cost absorbent. Journal of Membrane Science, 2015, 494: 143–153
https://doi.org/10.1016/j.memsci.2015.07.042
111 S Lee, J W Choi, S H Lee. Separation of greenhouse gases (SF6, CF4 and CO2) in an industrial flue gas using pilot-scale membrane. Separation and Purification Technology, 2015, 148: 15–24
https://doi.org/10.1016/j.seppur.2015.04.044
112 Y Li, X Li, H Wu, Q Xin, S Wang, Y Liu, Z Tian, T Zhou, Z Jiang, H Tian, X Cao, B Wang. Anionic surfactant-doped Pebax membrane with optimal free volume characteristics for efficient CO2 separation. Journal of Membrane Science, 2015, 493: 460–469
https://doi.org/10.1016/j.memsci.2015.06.046
113 S S M Lock, K K Lau, F Ahmad, A Shariff. Modeling, simulation and economic analysis of CO2 capture from natural gas using cocurrent, countercurrent and radial crossflow hollow fiber membrane. International Journal of Greenhouse Gas Control, 2015, 36: 114–134
https://doi.org/10.1016/j.ijggc.2015.02.014
114 T Mulukutla, J Chau, D Singh, G Obuskovic, K K Sirkar. Novel membrane contactor for CO2 removal from flue gas by temperature swing absorption. Journal of Membrane Science, 2015, 493: 321–328
https://doi.org/10.1016/j.memsci.2015.06.039
115 N A Rahim, N Ghasem, M Al Marzouqi. Absorption of CO2 from natural gas using different amino acid salt solutions and regeneration using hollow fiber membrane contactors. Journal of Natural Gas Science and Engineering, 2015, 26: 108–117
https://doi.org/10.1016/j.jngse.2015.06.010
116 M Sadoogh, A Mansourizadeh, H Mohammadinik. An experimental study on the stability of PVDF hollow fiber membrane contactors for CO2 absorption with alkanolamine solutions. Royal Society of Chemistry Advances, 2015, 5(105): 86031–86040
https://doi.org/10.1039/C5RA15263A
117 V Vakharia, K Ramasubramanian, W W Ho. An experimental and modeling study of CO2-selective membranes for IGCC syngas purification. Journal of Membrane Science, 2015, 488: 56–66
https://doi.org/10.1016/j.memsci.2015.04.007
118 S Wickramanayake, D Hopkinson, C Myers, L Hong, J Feng, Y Seol, D Plasynski, M Zeh, D Luebke. Mechanically robust hollow fiber supported ionic liquid membranes for CO2 separation applications. Journal of Membrane Science, 2014, 470: 52–59
https://doi.org/10.1016/j.memsci.2014.07.015
119 S Yan, Q He, S Zhao, Y Wang, P Ai. Biogas upgrading by CO2 removal with a highly selective natural amino acid salt in gas-liquid membrane contactor. Chemical Engineering and Processing: Process Intensification, 2014, 85: 125–135
https://doi.org/10.1016/j.cep.2014.08.009
120 D A Zaidiza, J Billaud, B Belaissaoui, S Rode, D Roizard, E Favre. Modeling of CO2 post-combustion capture using membrane contactors, comparison between one- and two-dimensional approaches. Journal of Membrane Science, 2014, 455: 64–74
https://doi.org/10.1016/j.memsci.2013.12.012
121 L Zhang, Z Y Qu, Y F Yan, S X Ju, Z E Zhang. Numerical investigation of the effects of polypropylene hollow fibre membrane structure on the performance of CO2 removal from flue gas. Royal Society of Chemistry Advances, 2015, 5(1): 424–433
https://doi.org/10.1039/C4RA08376H
122 X Zhang, W S Seames, B M Tande. Recovery of CO2 from monoethanolamine using a membrane contactor. Separation Science and Technology, 2014, 49(1): 1–11
https://doi.org/10.1080/01496395.2013.833625
123 Y Zhang, R Wang. Novel method for incorporating hydrophobic silica nanoparticles on polyetherimide hollow fiber membranes for CO2 absorption in a gas-liquid membrane contactor. Journal of Membrane Science, 2014, 452: 379–389
https://doi.org/10.1016/j.memsci.2013.10.011
124 Z Zhang, Y Yan, L Zhang, Y Chen, S Ju. CFD investigation of CO2 capture by methyldiethanolamine and 2-(1-piperazinyl)-ethylamine in membranes: Part B. Effect of membrane properties. Journal of Natural Gas Science and Engineering, 2014, 19: 311–316
https://doi.org/10.1016/j.jngse.2014.05.023
125 Z Zhang, Y Yan, L Zhang, S Ju. Numerical simulation and analysis of CO2 removal in a polypropylene hollow fiber membrane contactor. International Journal of Chemical Engineering, 2014, 2014: 1–7
https://doi.org/10.1155/2014/674925
126 A Baghban, A A Azar. ANFIS modeling of CO2 separation from natural gas using hollow fiber polymeric membrane. Energy Sources. Part A, Recovery, Utilization, and Environmental Effects, 2018, 40(2): 193–199
https://doi.org/10.1080/15567036.2017.1407845
127 G Dong, J Hou, J Wang, Y Zhang, V Chen, J Liu. Enhanced CO2/N2 separation by porous reduced graphene oxide/Pebax mixed matrix membranes. Journal of Membrane Science, 2016, 520: 860–868
https://doi.org/10.1016/j.memsci.2016.08.059
128 M Ghadiri, A Marjani, S Shirazian. Development of a mechanistic model for prediction of CO2 capture from gas mixtures by amine solutions in porous membranes. Environmental Science and Pollution Research International, 2017, 24(16): 14508–14515
https://doi.org/10.1007/s11356-017-9048-8
129 S Gilassi, N Rahmanian. CFD modelling of a hollow fibre membrane for CO2 removal by aqueous amine solutions of MEA, DEA and MDEA. International Journal of Chemical Reactor Engineering, 2016, 14(1): 53–61
https://doi.org/10.1515/ijcre-2014-0142
130 S Hosseini, A Mansourizadeh. Preparation of porous hydrophobic poly(vinylidene fluoride-co-hexafluoropropylene) hollow fiber membrane contactors for CO2 stripping. Journal of the Taiwan Institute of Chemical Engineers, 2017, 76: 156–166
https://doi.org/10.1016/j.jtice.2017.04.014
131 P Jin, C Huang, Y Shen, X Zhan, X Hu, L Wang, L Wang. Simultaneous separation of H2S and CO2 from biogas by gas-liquid membrane contactor using single and mixed absorbents. Energy & Fuels, 2017, 31(10): 11117–11126
https://doi.org/10.1021/acs.energyfuels.7b02114
132 E S Jo, X An, P G Ingole, W K Choi, Y S Park, H K Lee. CO2/CH4 separation using inside coated thin film composite hollow fiber membranes prepared by interfacial polymerization. Chinese Journal of Chemical Engineering, 2017, 25(3): 278–287
https://doi.org/10.1016/j.cjche.2016.07.010
133 A Jomekian, R M Behbahani, T Mohammadi, A Kargari. CO2/CH4 separation by high performance co-casted ZIF-8/Pebax 1657/PES mixed matrix membrane. Journal of Natural Gas Science and Engineering, 2016, 31: 562–574
https://doi.org/10.1016/j.jngse.2016.03.067
134 S J Kim, A Park, S E Nam, Y I Park, P S Lee. Practical designs of membrane contactors and their performances in CO2/CH4 separation. Chemical Engineering Science, 2016, 155: 239–247
https://doi.org/10.1016/j.ces.2016.08.018
135 J Liao, Z Wang, M Wang, C Gao, S Zhao, J Wang, S Wang. Adjusting carrier microenvironment in CO2 separation fixed carrier membrane. Journal of Membrane Science, 2016, 511: 9–19
https://doi.org/10.1016/j.memsci.2016.03.037
136 A Otani, Y Zhang, T Matsuki, E Kamio, H Matsuyama, E J Maginn. Molecular design of high CO2 reactivity and low viscosity ionic liquids for CO2 separative facilitated transport membranes. Industrial & Engineering Chemistry Research, 2016, 55(10): 2821–2830
https://doi.org/10.1021/acs.iecr.6b00188
137 S Rafiq, L Deng, M B Hägg. Role of facilitated transport membranes and composite membranes for efficient CO2 capture: a review. ChemBioEng Reviews, 2016, 3(2): 68–85
https://doi.org/10.1002/cben.201500013
138 S M R Razavi, S Shirazian, M Nazemian. Numerical simulation of CO2 separation from gas mixtures in membrane modules: effect of chemical absorbent. Arabian Journal of Chemistry, 2016, 9(1): 62–71
https://doi.org/10.1016/j.arabjc.2015.06.006
139 K T Woo, G Dong, J Lee, J S Kim, Y S Do, W H Lee, H S Lee, Y M Lee. Ternary mixed-gas separation for flue gas CO2 capture using high performance thermally rearranged (TR) hollow fiber membranes. Journal of Membrane Science, 2016, 510: 472–480
https://doi.org/10.1016/j.memsci.2016.03.033
140 Y Yan, Z Zhang, L Zhang, J Wang, J Li, S Ju. Modeling of CO2 separation from flue gas by methyldiethanolamine and 2-(1-piperazinyl)-ethylamine in membrane contactors: effect of gas and liquid parameters. Journal of Energy Engineering, 2014, 141(4): 04014034
https://doi.org/10.1061/(ASCE)EY.1943-7897.0000215
141 D A Zaidiza, B Belaissaoui, S Rode, T Neveux, C Makhloufi, C Castel, D Roizard, E Favre. Adiabatic modelling of CO2 capture by amine solvents using membrane contactors. Journal of Membrane Science, 2015, 493: 106–119
https://doi.org/10.1016/j.memsci.2015.06.015
142 D A Zaidiza, S G Wilson, B Belaissaoui, S Rode, C Castel, D Roizard, E Favre. Rigorous modelling of adiabatic multicomponent CO2 post-combustion capture using hollow fibre membrane contactors. Chemical Engineering Science, 2016, 145: 45–58
https://doi.org/10.1016/j.ces.2016.01.053
143 L Zhang, J Li, L Zhou, R Liu, X Wang, L Yang. Fouling of impurities in desulfurized flue gas on hollow fiber membrane absorption for CO2 capture. Industrial & Engineering Chemistry Research, 2016, 55(29): 8002–8010
https://doi.org/10.1021/acs.iecr.5b04021
144 L Zhang, R Qu, Y Sha, X Wang, L Yang. Membrane gas absorption for CO2 capture from flue gas containing fine particles and gaseous contaminants. International Journal of Greenhouse Gas Control, 2015, 33: 10–17
https://doi.org/10.1016/j.ijggc.2014.11.017
145 L Zhang, X Wang, R Yu, J Li, B Hu, L Yang. Hollow fiber membrane separation process in the presence of gaseous and particle impurities for post-combustion CO2 capture. International Journal of Green Energy, 2017, 14(1): 15–23
https://doi.org/10.1080/15435075.2016.1236724
146 G Kang, Z P Chan, S B M Saleh, Y Cao. Removal of high concentration CO2 from natural gas using high pressure membrane contactors. International Journal of Greenhouse Gas Control, 2017, 60: 1–9
https://doi.org/10.1016/j.ijggc.2017.03.003
147 S H Kim, J K Kim, J G Yeo, Y K Yeo. Comparative feasibility study of CO2 capture in hollowfiber membrane processes based on process models and heat exchanger analysis. Chemical Engineering Research & Design, 2017, 117: 659–669
https://doi.org/10.1016/j.cherd.2016.11.022
148 S Lee, M Binns, J H Lee, J H Moon, J G Yeo, Y K Yeo, Y M Lee, J K Kim. Membrane separation process for CO2 capture from mixed gases using TR and XTR hollow fiber membranes: process modeling and experiments. Journal of Membrane Science, 2017, 541: 224–234
https://doi.org/10.1016/j.memsci.2017.07.003
149 H Li, X Ding, Y Zhang, J Liu. Porous graphene nanosheets functionalized thin film nanocomposite membrane prepared by interfacial polymerization for CO2/N2 separation. Journal of Membrane Science, 2017, 543: 58–68
https://doi.org/10.1016/j.memsci.2017.08.046
150 B Liu, R Zhou, N Bu, Q Wang, S Zhong, B Wang, K Hidetoshi. Room-temperature ionic liquids modified zeolite SSZ-13 membranes for CO2/CH4 separation. Journal of Membrane Science, 2017, 524: 12–19
https://doi.org/10.1016/j.memsci.2016.11.004
151 M Mirfendereski, T Mohammadi. Investigation of H2S and CO2 removal from gas streams using hollow fiber membrane gas-liquid contactors. Chemical and Biochemical Engineering Quarterly, 2017, 31(2): 139–144
https://doi.org/10.15255/CABEQ.2016.1022
152 Y Rahmawati, S Nurkhamidah. N I Susianto, Listiyana, W Putricahyani. Application of dual membrane contactor for simultaneous CO2 removal using continues diethanolamine (DEA). In: AIP Conference Proceedings. AIP Publishing, 2017, 100009
153 I A Rudaini, R Naim, S Abdullah, N M Mokhtar, J Jaafar. PVDF-cloisite hollow fiber membrane for CO2 absorption via membrane contactor. Jurnal Teknologi, 2017, 79(1-2): 17–23
154 M Saidi. Kinetic study and process model development of CO2 absorption using hollow fiber membrane contactor with promoted hot potassium carbonate. Journal of Environmental Chemical Engineering, 2017, 5(5): 4415–4430
https://doi.org/10.1016/j.jece.2017.08.005
155 M Saidi. Mathematical modeling of CO2 absorption into novel reactive DEAB solution in hollow fiber membrane contactors; kinetic and mass transfer investigation. Journal of Membrane Science, 2017, 524: 186–196
https://doi.org/10.1016/j.memsci.2016.11.028
156 M Usman, Z Dai, M Hillestad, L Deng. Mathematical modeling and validation of CO2 mass transfer in a membrane contactor using ionic liquids for pre-combustion CO2 capture. Chemical Engineering Research & Design, 2017, 123: 377–387
https://doi.org/10.1016/j.cherd.2017.05.026
157 F Wang, G Kang, D Liu, M Li, Y Cao. Enhancing CO2 absorption efficiency using a novel PTFE hollow fiber membrane contactor at elevated pressure. AIChE Journal. American Institute of Chemical Engineers, 2018, 64(6): 2135–2145
https://doi.org/10.1002/aic.16014
158 F Zhou, H N Tien, W L Xu, J T Chen, Q Liu, E Hicks, M Fathizadeh, S Li, M Yu. Ultrathin graphene oxide-based hollow fiber membranes with brush-like CO2-philic agent for highly efficient CO2 capture. Nature Communications, 2017, 8(1): 2107
https://doi.org/10.1038/s41467-017-02318-1
159 L Hu, J Cheng, Y Li, J Liu, J Zhou, K Cen. In-situ grafting to improve polarity of polyacrylonitrile hollow fiber-supported polydimethylsiloxane membranes for CO2 separation. Journal of Colloid and Interface Science, 2018, 510: 12–19
https://doi.org/10.1016/j.jcis.2017.09.048
160 D Ko. Development of a dynamic simulation model of a hollow fiber membrane module to sequester CO2 from coalbed methane. Journal of Membrane Science, 2018, 546: 258–269
https://doi.org/10.1016/j.memsci.2017.09.040
161 H Pang, H Gong, M Du, Q Shen, Z Chen. Effect of non-solvent additive concentration on CO2 absorption performance of polyvinylidenefluoride hollow fiber membrane contactor. Separation and Purification Technology, 2018, 191: 38–47
https://doi.org/10.1016/j.seppur.2017.09.012
162 R Fazaeli, S M R Razavi, M S Najafabadi, R Torkaman, A Hemmati. Computational simulation of CO2 removal from gas mixtures by chemical absorbents in porous membranes. Royal Society of Chemistry Advances, 2015, 5(46): 36787–36797
https://doi.org/10.1039/C5RA02001H
163 S Eslami, S M Mousavi, S Danesh, H Banazadeh. Modeling and simulation of CO2 removal from power plant flue gas by PG solution in a hollow fiber membrane contactor. Advances in Engineering Software, 2011, 42(8): 612–620
https://doi.org/10.1016/j.advengsoft.2011.05.002
164 A M Marti, W Wickramanayake, G Dahe, A Sekizkardes, T L Bank, D P Hopkinson, S R Venna. Continuous flow processing of ZIF-8 membranes on polymeric porous hollow fiber supports for CO2 capture. ACS Applied Materials & Interfaces, 2017, 9(7): 5678–5682
https://doi.org/10.1021/acsami.6b16297
165 D Q Vu, W J Koros, S J Miller. High pressure CO2/CH4 separation using carbon molecular sieve hollow fiber membranes. Industrial & Engineering Chemistry Research, 2002, 41(3): 367–380
https://doi.org/10.1021/ie010119w
166 Z Wang, M Fang, H Yu, Q Ma, Z Luo. Modeling of CO2 stripping in a hollow fiber membrane contactor for CO2 capture. Energy & Fuels, 2013, 27(11): 6887–6898
https://doi.org/10.1021/ef401488c
167 J H Lee, J Lee, H J Jo, J G Seong, J S Kim, W H Lee, J Moon, D Lee, W J Oh, J G Yeo, Y M Lee. Wet CO2/N2 permeation through a crosslinked thermally rearranged poly(benzoxazole-co-imide) (XTR-PBOI) hollow fiber membrane module for CO2 capture. Journal of Membrane Science, 2017, 539: 412–420
https://doi.org/10.1016/j.memsci.2017.06.032
168 S Li, T J Pyrzynski, N B Klinghoffer, T Tamale, Y Zhong, J L Aderhold, S J Zhou, H S Meyer, Y Ding, B Bikson. Scale-up of PEEK hollow fiber membrane contactor for post-combustion CO2 capture. Journal of Membrane Science, 2017, 527: 92–101
https://doi.org/10.1016/j.memsci.2017.01.014
169 S Hwang, W S Chi, S J Lee, S H Im, J H Kim, J Kim. Hollow ZIF-8 nanoparticles improve the permeability of mixed matrix membranes for CO2/CH4 gas separation. Journal of Membrane Science, 2015, 480: 11–19
https://doi.org/10.1016/j.memsci.2015.01.038
170 A L Khan, C Klaysom, A Gahlaut, X Li, I F Vankelecom. SPEEK and functionalized mesoporous MCM-41 mixed matrix membranes for CO2 separations. Journal of Materials Chemistry, 2012, 22(37): 20057–20064
https://doi.org/10.1039/c2jm34885c
171 A L Khan, C Klaysom, A Gahlaut, I F Vankelecom. Polysulfone acrylate membranes containing functionalized mesoporous MCM-41 for CO2 separation. Journal of Membrane Science, 2013, 436: 145–153
https://doi.org/10.1016/j.memsci.2013.02.023
172 S Li, C Q Fan. High-flux SAPO-34 membrane for CO2/N2 separation. Industrial & Engineering Chemistry Research, 2010, 49(9): 4399–4404
https://doi.org/10.1021/ie902082f
173 X Li, Y Cheng, H Zhang, S Wang, Z Jiang, R Guo, H Wu. Efficient CO2 capture by functionalized graphene oxide nanosheets as fillers to fabricate multi-permselective mixed matrix membranes. ACS Applied Materials & Interfaces, 2015, 7(9): 5528–5537
https://doi.org/10.1021/acsami.5b00106
174 X Li, Z Jiang, Y Wu, H Zhang, Y Cheng, R Guo, H Wu. High-performance composite membranes incorporated with carboxylic acid nanogels for CO2 separation. Journal of Membrane Science, 2015, 495: 72–80
https://doi.org/10.1016/j.memsci.2015.07.065
175 X Li, L Ma, H Zhang, S Wang, Z Jiang, R Guo, H Wu, X Cao, J Yang, B Wang. Synergistic effect of combining carbon nanotubes and graphene oxide in mixed matrix membranes for efficient CO2 separation. Journal of Membrane Science, 2015, 479: 1–10
https://doi.org/10.1016/j.memsci.2015.01.014
176 R Lin, L Ge, S Liu, V Rudolph, Z Zhu. Mixed-matrix membranes with metal-organic framework-decorated CNT fillers for efficient CO2 separation. ACS Applied Materials & Interfaces, 2015, 7(27): 14750–14757
https://doi.org/10.1021/acsami.5b02680
177 M Loloei, M Omidkhah, A Moghadassi, A E Amooghin. Preparation and characterization of Matrimid® 5218 based binary and ternary mixed matrix membranes for CO2 separation. International Journal of Greenhouse Gas Control, 2015, 39: 225–235
https://doi.org/10.1016/j.ijggc.2015.04.016
178 A Mahmoudi, M Asghari, V Zargar. CO2/CH4 separation through a novel commercializable three-phase PEBA/PEG/NaX nanocomposite membrane. Journal of Industrial and Engineering Chemistry, 2015, 23: 238–242
https://doi.org/10.1016/j.jiec.2014.08.023
179 A Moghadassi, Z Rajabi, S Hosseini, M Mohammadi. Preparation and characterization of polycarbonate-blend-raw/functionalized multi-walled carbon nano tubes mixed matrix membrane for CO2 separation. Separation Science and Technology, 2013, 48(8): 1261–1271
https://doi.org/10.1080/01496395.2012.730597
180 D F Mohshim, H Mukhtar, Z Man. The effect of incorporating ionic liquid into polyethersulfone-SAPO-34 based mixed matrix membrane on CO2 gas separation performance. Separation and Purification Technology, 2014, 135: 252–258
https://doi.org/10.1016/j.seppur.2014.08.019
181 V Nafisi, M B Hägg. Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture. Journal of Membrane Science, 2014, 459: 244–255
https://doi.org/10.1016/j.memsci.2014.02.002
182 M Peydayesh, S Asarehpour, T Mohammadi, O Bakhtiari. Preparation and characterization of SAPO-34-Matrimid® 5218 mixed matrix membranes for CO2/CH4 separation. Chemical Engineering Research & Design, 2013, 91(7): 1335–1342
https://doi.org/10.1016/j.cherd.2013.01.022
183 T Rodenas, M Van Dalen, E García Pérez, P Serra Crespo, B Zornoza, F Kapteijn, J Gascon. Visualizing MOF mixed matrix membranes at the nanoscale: towards structure-performance relationships in CO2/CH4 separation over NH2-MIL-53 (Al)@ PI. Advanced Functional Materials, 2014, 24(2): 249–256
https://doi.org/10.1002/adfm.201203462
184 T Rodenas, M Van Dalen, P Serra Crespo, F Kapteijn, J Gascon. Mixed matrix membranes based on NH2-functionalized MIL-type MOFs: influence of structural and operational parameters on the CO2/CH4 separation performance. Microporous and Mesoporous Materials, 2014, 192: 35–42
https://doi.org/10.1016/j.micromeso.2013.08.049
185 D K Roh, S J Kim, W S Chi, J K Kim, J H Kim. Dual-functionalized mesoporous TiO2 hollow nanospheres for improved CO2 separation membranes. Chemical Communications, 2014, 50(43): 5717–5720
https://doi.org/10.1039/C4CC00513A
186 J A Thompson, J T Vaughn, N A Brunelli, W J Koros, C W Jones, S Nair. Mixed-linker zeolitic imidazolate framework mixed-matrix membranes for aggressive CO2 separation from natural gas. Microporous and Mesoporous Materials, 2014, 192: 43–51
https://doi.org/10.1016/j.micromeso.2013.06.036
187 Q Xin, H Wu, Z Jiang, Y Li, S Wang, Q Li, X Li, X Lu, X Cao, J Yang. SPEEK/amine-functionalized TiO2 submicrospheres mixed matrix membranes for CO2 separation. Journal of Membrane Science, 2014, 467: 23–35
https://doi.org/10.1016/j.memsci.2014.04.048
188 R Xing, W W Ho. Crosslinked polyvinylalcohol-polysiloxane/fumed silica mixed matrix membranes containing amines for CO2/H2 separation. Journal of Membrane Science, 2011, 367(1-2): 91–102
https://doi.org/10.1016/j.memsci.2010.10.039
189 G Yilmaz, S Keskin. Predicting the performance of zeolite imidazolate framework/polymer mixed matrix membranes for CO2, CH4 and H2 separations using molecular simulations. Industrial & Engineering Chemistry Research, 2012, 51(43): 14218–14228
https://doi.org/10.1021/ie302290a
190 L Zhang, Z Hu, J Jiang. Metal-organic framework/polymer mixed-matrix membranes for H2/CO2 separation: a fully atomistic simulation study. Journal of Physical Chemistry C, 2012, 116(36): 19268–19277
https://doi.org/10.1021/jp3067124
191 D Zhao, J Ren, H Li, K Hua, M Deng. Poly(amide-6-b-ethylene oxide)/SAPO-34 mixed matrix membrane for CO2 separation. Journal of Energy Chemistry, 2014, 23(2): 227–234
https://doi.org/10.1016/S2095-4956(14)60140-6
192 H Y Zhao, Y M Cao, X L Ding, M Q Zhou, J H Liu, Q Yuan. Poly(ethylene oxide) induced cross-linking modification of matrimid membranes for selective separation of CO2. Journal of Membrane Science, 2008, 320(1-2): 179–184
https://doi.org/10.1016/j.memsci.2008.03.070
193 R Nasir, H Mukhtar, Z Man, M S Shaharun, M A Bakar. Development and performance prediction of polyethersulfone-carbon molecular sieve mixed matrix membrane for CO2/CH4 separation. Chemical Engineering Transactions, 2015, 45: 1417–1422
194 H Rabiee, S M Alsadat, M Soltanieh, S A Mousavi, A Ghadimi. Gas permeation and sorption properties of poly(amide-12-b-ethyleneoxide)(Pebax1074)/SAPO-34 mixed matrix membrane for CO2/CH4 and CO2/N2 separation. Journal of Industrial and Engineering Chemistry, 2015, 27: 223–239
https://doi.org/10.1016/j.jiec.2014.12.039
195 M Rezaei, A F Ismail, G Bakeri, S Hashemifard, T Matsuura. Effect of general montmorillonite and cloisite 15A on structural parameters and performance of mixed matrix membranes contactor for CO2 absorption. Chemical Engineering Journal, 2015, 260: 875–885
https://doi.org/10.1016/j.cej.2014.09.027
196 B Seoane, J Coronas, I Gascon, M E Benavides, O Karvan, J Caro, F Kapteijn, J Gascon. Metal-organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture? Chemical Society Reviews, 2015, 44(8): 2421–2454
https://doi.org/10.1039/C4CS00437J
197 S Sorribas, B Comesaña Gándara, A E Lozano, B Zornoza, C Téllez, J Coronas. Insight into ETS-10 synthesis for the preparation of mixed matrix membranes for CO2/CH4 gas separation. Royal Society of Chemistry Advances, 2015, 5(124): 102392–102398
https://doi.org/10.1039/C5RA20172A
198 S A Alavi, A Kargari, H Sanaeepur, M Karimi. Preparation and characterization of PDMS/zeolite 4A/PAN mixed matrix thin film composite membrane for CO2/N2 and CO2/CH4 separations. Research on Chemical Intermediates, 2017, 43(5): 2959–2984
https://doi.org/10.1007/s11164-016-2806-2
199 A E Amooghin, M Omidkhah, H Sanaeepur, A Kargari. Preparation and characterization of Ag+ ion-exchanged zeolite-Matrimid® 5218 mixed matrix membrane for CO2/CH4 separation. Journal of Energy Chemistry, 2016, 25(3): 450–462
https://doi.org/10.1016/j.jechem.2016.02.004
200 X Dong, Q Liu, A Huang. Highly permselective MIL-68 (Al)/matrimid mixed matrix membranes for CO2/CH4 separation. Journal of Applied Polymer Science, 2016, 133(22): 43485
https://doi.org/10.1002/app.43485
201 H Hosseinzadeh Beiragh, M Omidkhah, R Abedini, T Khosravi, S Pakseresht. Synthesis and characterization of poly(ether-block-amide) mixed matrix membranes incorporated by nanoporous ZSM-5 particles for CO2/CH4 separation. Asia-Pacific Journal of Chemical Engineering, 2016, 11(4): 522–532
https://doi.org/10.1002/apj.1973
202 Z Kang, Y Peng, Y Qian, D Yuan, M A Addicoat, T Heine, Z Hu, L Tee, Z Guo, D Zhao. Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO2 separation. Chemistry of Materials, 2016, 28(5): 1277–1285
https://doi.org/10.1021/acs.chemmater.5b02902
203 A Kertik, A L Khan, I F Vankelecom. Mixed matrix membranes prepared from non-dried MOFs for CO2/CH4 separations. Royal Society of Chemistry Advances, 2016, 6(115): 114505–114512
https://doi.org/10.1039/C6RA23013J
204 J Kim, J Choi, Y Soo Kang, J Won. Matrix effect of mixed-matrix membrane containing CO2-selective MOFs. Journal of Applied Polymer Science, 2016, 133(1): n/a
https://doi.org/10.1002/app.42853
205 J Kim, Q Fu, J M Scofield, S E Kentish, G G Qiao. Ultra-thin film composite mixed matrix membranes incorporating iron (III)-dopamine nanoparticles for CO2 separation. Nanoscale, 2016, 8(15): 8312–8323
https://doi.org/10.1039/C5NR08840B
206 J Kim, Q Fu, K Xie, J M Scofield, S E Kentish, G G Qiao. CO2 separation using surface-functionalized SiO2 nanoparticles incorporated ultra-thin film composite mixed matrix membranes for post-combustion carbon capture. Journal of Membrane Science, 2016, 515: 54–62
https://doi.org/10.1016/j.memsci.2016.05.029
207 S J Kim, W S Chi, H Jeon, J H Kim, R Patel. Spontaneously self-assembled dual-layer mixed matrix membranes containing mass-produced mesoporous TiO2 for CO2 capture. Journal of Membrane Science, 2016, 508: 62–72
https://doi.org/10.1016/j.memsci.2016.02.023
208 H Koolivand, A Sharif, E Chehrazi, M R Kashani, S M R Paran. Mixed-matrix membranes comprising graphene-oxide nanosheets for CO2/CH4 separation: a comparison between glassy and rubbery polymer matrices. Polymer Science, Series A, 2016, 58(5): 801–809
https://doi.org/10.1134/S0965545X16050084
209 Q Xin, Z Li, C Li, S Wang, Z Jiang, H Wu, Y Zhang, J Yang, X Cao. Enhancing the CO2 separation performance of composite membranes by the incorporation of amino acid-functionalized graphene oxide. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(12): 6629–6641
https://doi.org/10.1039/C5TA00506J
210 A Brunetti, M Cersosimo, J S Kim, G Dong, E Fontananova, Y M Lee, E Drioli, G Barbieri. Thermally rearranged mixed matrix membranes for CO2 separation: an aging study. International Journal of Greenhouse Gas Control, 2017, 61: 16–26
https://doi.org/10.1016/j.ijggc.2017.03.024
211 Y Cheng, X Wang, C Jia, Y Wang, L Zhai, Q Wang, D Zhao. Ultrathin mixed matrix membranes containing two-dimensional metal-organic framework nanosheets for efficient CO2/CH4 separation. Journal of Membrane Science, 2017, 539: 213–223
https://doi.org/10.1016/j.memsci.2017.06.011
212 S Galaleldin, H Mannan, H Mukhtar. Development and characterization of polyethersulfone/TiO2 mixed matrix membranes for CO2/CH4 separation. In: AIP Conference Proceedings. Melville, NY: AIP Publishing, 2017, 130017
213 N Jusoh, Y F Yeong, K K Lau, A M Shariff. Transport properties of mixed matrix membranes encompassing zeolitic imidazolate framework 8 (ZIF-8) nanofiller and 6FDA-durene polymer: optimization of process variables for the separation of CO2 from CH4. Journal of Cleaner Production, 2017, 149: 80–95
https://doi.org/10.1016/j.jclepro.2017.02.069
214 I Khalilinejad, A Kargari, H Sanaeepur. Preparation and characterization of (Pebax 1657+ silica nanoparticle)/PVC mixed matrix composite membrane for CO2/N2 separation. Chemical Papers, 2017, 71(4): 803–818
https://doi.org/10.1007/s11696-016-0084-5
215 T Khosravi, M Omidkhah, S Kaliaguine, D Rodrigue. Amine-functionalized CuBTC/poly (ether-b-amide-6)(Pebax® MH 1657) mixed matrix membranes for CO2/CH4 separation. Canadian Journal of Chemical Engineering, 2017, 95(10): 2024–2033
https://doi.org/10.1002/cjce.22857
216 M Krea, D Roizard, E Favre. Copoly (alkyl ether imide) membranes as promising candidates for CO2 capture applications. Separation and Purification Technology, 2016, 161: 53–60
https://doi.org/10.1016/j.seppur.2016.01.045
217 Y Liu, X Li, Y Qin, R Guo, J Zhang. Pebax-polydopamine microsphere mixed-matrix membranes for efficient CO2 separation. Journal of Applied Polymer Science, 2017, 134(10): 44564
https://doi.org/10.1002/app.44564
218 V Martin Gil, A López, P Hrabanek, R Mallada, I Vankelecom, V Fila. Study of different titanosilicate (TS-1 and ETS-10) as fillers for mixed matrix membranes for CO2/CH4 gas separation applications. Journal of Membrane Science, 2017, 523: 24–35
https://doi.org/10.1016/j.memsci.2016.09.041
219 M H Nematollahi, A H S Dehaghani, R Abedini. CO2/CH4 separation with poly(4-methyl-1-pentyne) (TPX) based mixed matrix membrane filled with Al2O3 nanoparticles. Korean Journal of Chemical Engineering, 2016, 33(2): 657–665
https://doi.org/10.1007/s11814-015-0168-x
220 M H Nematollahi, A H S Dehaghani, V Pirouzfar, E Akhondi. Mixed matrix membranes comprising PMP polymer with dispersed alumina nanoparticle fillers to separate CO2/N2. Macromolecular Research, 2016, 24(9): 782–792
https://doi.org/10.1007/s13233-016-4113-6
221 T H Nguyen, H Gong, S S Lee, T H Bae. Amine-appended hierarchical Ca—a zeolite for enhancing CO2/CH4 selectivity of mixed-matrix membranes. ChemPhysChem, 2016, 17(20): 3165–3169
https://doi.org/10.1002/cphc.201600561
222 N A H M Nordin, A F Ismail, N Misdan, N A M Nazri. Modified ZIF-8 mixed matrix membrane for CO2/CH4 separation. in AIP Conference Proceedings. Melville, NY: AIP Publishing, 2017, 020091
223 C H Park, J H Lee, E Jang, K B Lee, J H Kim. MgCO3-crystal-containing mixed matrix membranes with enhanced CO2 permselectivity. Chemical Engineering Journal, 2017, 307: 503–512
https://doi.org/10.1016/j.cej.2016.08.098
224 S Quan, S W Li, Y C Xiao, L Shao. CO2-selective mixed matrix membranes (MMMs) containing graphene oxide (GO) for enhancing sustainable CO2 capture. International Journal of Greenhouse Gas Control, 2017, 56: 22–29
https://doi.org/10.1016/j.ijggc.2016.11.010
225 M Rahmani, A Kazemi, F Talebnia. Matrimid mixed matrix membranes for enhanced CO2/CH4 separation. Journal of Polymer Engineering, 2016, 36(5): 499–511
https://doi.org/10.1515/polyeng-2015-0176
226 H Sanaeepur, A Kargari, B Nasernejad, A E Amooghin, M Omidkhah. A novel Co2+ exchanged zeolite Y/cellulose acetate mixed matrix membrane for CO2/N2 separation. Journal of the Taiwan Institute of Chemical Engineers, 2016, 60: 403–413
https://doi.org/10.1016/j.jtice.2015.10.042
227 J Sánchez Laínez, B Zornoza, S Friebe, J Caro, S Cao, A Sabetghadam, B Seoane, J Gascon, F Kapteijn, C Le Guillouzer, G Clet, M Daturi, C Téllez, J Coronas. Influence of ZIF-8 particle size in the performance of polybenzimidazole mixed matrix membranes for pre-combustion CO2 capture and its validation through interlaboratory test. Journal of Membrane Science, 2016, 515: 45–53
https://doi.org/10.1016/j.memsci.2016.05.039
228 J Sánchez Laínez, B Zornoza, C Téllez, J Coronas. On the chemical filler-polymer interaction of nano-and micro-sized ZIF-11 in PBI mixed matrix membranes and their application for H2/CO2 separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(37): 14334–14341
https://doi.org/10.1039/C6TA06438H
229 A A Shamsabadi, F Seidi, E Salehi, M Nozari, A Rahimpour, M Soroush. Efficient CO2-removal using novel mixed-matrix membranes with modified TiO2 nanoparticles. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(8): 4011–4025
https://doi.org/10.1039/C6TA09990D
230 J Shen, G Liu, K Huang, Q Li, K Guan, Y Li, W Jin. UiO-66-polyether block amide mixed matrix membranes for CO2 separation. Journal of Membrane Science, 2016, 513: 155–165
https://doi.org/10.1016/j.memsci.2016.04.045
231 J Shen, M Zhang, G Liu, K Guan, W Jin. Size effects of graphene oxide on mixed matrix membranes for CO2 separation. AIChE Journal. American Institute of Chemical Engineers, 2016, 62(8): 2843–2852
https://doi.org/10.1002/aic.15260
232 Y Shen, H Wang, X Zhang, Y Zhang. MoS2 nanosheets functionalized composite mixed matrix membrane for enhanced CO2 capture via surface drop-coating method. ACS Applied Materials & Interfaces, 2016, 8(35): 23371–23378
https://doi.org/10.1021/acsami.6b07153
233 H Shin, W S Chi, S Bae, J H Kim, J Kim. High-performance thin PVC-POEM/ZIF-8 mixed matrix membranes on alumina supports for CO2/CH4 separation. Journal of Industrial and Engineering Chemistry, 2017, 53: 127–133
https://doi.org/10.1016/j.jiec.2017.04.013
234 Z Sumer, S Keskin. Computational screening of MOF-based mixed matrix membranes for CO2/N2 Separations. Journal of Nanomaterials, 2016, 2016: 1–12
https://doi.org/10.1155/2016/6482628
235 H H Tseng, H W Chuang, G L Zhuang, W H Lai, M Y Wey. Structure-controlled mesoporous SBA-15-derived mixed matrix membranes for H2 purification and CO2 capture. International Journal of Hydrogen Energy, 2017, 42(16): 11379–11391
https://doi.org/10.1016/j.ijhydene.2017.03.026
236 N Waheed, A Mushtaq, S Tabassum, M A Gilani, A Ilyas, F Ashraf, Y Jamal, M R Bilad, A U Khan, A L Khan. Mixed matrix membranes based on polysulfone and rice husk extracted silica for CO2 separation. Separation and Purification Technology, 2016, 170: 122–129
https://doi.org/10.1016/j.seppur.2016.06.035
237 Z Wang, H Ren, S Zhang, F Zhang, J Jin. Polymers of intrinsic microporosity/metal-organic framework hybrid membranes with improved interfacial interaction for high-performance CO2 separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(22): 10968–10977
https://doi.org/10.1039/C7TA01773A
238 L Xiang, Y Pan, G Zeng, J Jiang, J Chen, C Wang. Preparation of poly(ether-block-amide)/attapulgite mixed matrix membranes for CO2/N2 separation. Journal of Membrane Science, 2016, 500: 66–75
https://doi.org/10.1016/j.memsci.2015.11.017
239 Q Xin, Y Zhang, T Huo, H Ye, X Ding, L Lin, Y Zhang, H Wu, Z Jiang. Mixed matrix membranes fabricated by a facile in situ biomimetic mineralization approach for efficient CO2 separation. Journal of Membrane Science, 2016, 508: 84–93
https://doi.org/10.1016/j.memsci.2016.02.022
240 Q Xin, Y Zhang, Y Shi, H Ye, L Lin, X Ding, Y Zhang, H Wu, Z Jiang. Tuning the performance of CO2 separation membranes by incorporating multifunctional modified silica microspheres into polymer matrix. Journal of Membrane Science, 2016, 514: 73–85
https://doi.org/10.1016/j.memsci.2016.04.046
241 H Zhang, R Guo, J Hou, Z Wei, X Li. Mixed-matrix membranes containing carbon nanotubes composite with hydrogel for efficient CO2 separation. ACS Applied Materials & Interfaces, 2016, 8(42): 29044–29051
https://doi.org/10.1021/acsami.6b09786
242 D Zhao, J Ren, Y Wang, Y Qiu, H Li, K Hua, X Li, J Ji, M Deng. High CO2 separation performance of Pebax®/CNTs/GTA mixed matrix membranes. Journal of Membrane Science, 2017, 521: 104–113
https://doi.org/10.1016/j.memsci.2016.08.061
243 Y Li, T S Chung. Molecular-level mixed matrix membranes comprising Pebax® and POSS for hydrogen purification via preferential CO2 removal. International Journal of Hydrogen Energy, 2010, 35(19): 10560–10568
https://doi.org/10.1016/j.ijhydene.2010.07.124
244 S Ebrahimi, S Mollaiy Berneti, H Asadi, M Peydayesh, F Akhlaghian, T Mohammadi. PVA/PES-amine-functional graphene oxide mixed matrix membranes for CO2/CH4 separation: experimental and modeling. Chemical Engineering Research & Design, 2016, 109: 647–656
https://doi.org/10.1016/j.cherd.2016.03.009
245 L Xiong, S Gu, K O Jensen, Y S Yan. Facilitated transport in hydroxide-exchange membranes for post-combustion CO2 separation. ChemSusChem, 2014, 7(1): 114–116
https://doi.org/10.1002/cssc.201300286
246 T Zhou, L Luo, S Hu, S Wang, R Zhang, H Wu, Z Jiang, B Wang, J Yang. Janus composite nanoparticle-incorporated mixed matrix membranes for CO2 separation. Journal of Membrane Science, 2015, 489: 1–10
https://doi.org/10.1016/j.memsci.2015.03.070
247 Z Cui, D DeMontigny. Part 7: a review of CO2 capture using hollow fiber membrane contactors. Carbon Management, 2013, 4(1): 69–89
https://doi.org/10.4155/cmt.12.73
248 M Z Ahmad, M Navarro, M Lhotka, B Zornoza, C Téllez, V Fila, J Coronas. Enhancement of CO2/CH4 separation performances of 6FDA-based co-polyimides mixed matrix membranes embedded with UiO-66 nanoparticles. Separation and Purification Technology, 2018, 192: 465–474
https://doi.org/10.1016/j.seppur.2017.10.039
249 L Cao, K Tao, A Huang, C Kong, L Chen. A highly permeable mixed matrix membrane containing CAU-1-NH2 for H2 and CO2 separation. Chemical Communications, 2013, 49(76): 851–8515
https://doi.org/10.1039/c3cc44530e
250 L Dong, Y Sun, C Zhang, D Han, Y Bai, M Chen. Efficient CO2 capture by metallo-supramolecular polymers as fillers to fabricate a polymeric blend membrane. Royal Society of Chemistry Advances, 2015, 5(83): 67658–67661
https://doi.org/10.1039/C5RA12913C
251 I Erucar, S Keskin. Screening metal-organic framework-based mixed-matrix membranes for CO2/CH4 separations. Industrial & Engineering Chemistry Research, 2011, 50(22): 12606–12616
https://doi.org/10.1021/ie201885s
252 A Huang, Y Chen, Q Liu, N Wang, J Jiang, J Caro. Synthesis of highly hydrophobic and permselective metal-organic framework Zn (BDC)(TED) 0.5 membranes for H2/CO2 separation. Journal of Membrane Science, 2014, 454: 126–132
https://doi.org/10.1016/j.memsci.2013.12.018
253 W Li, X Zheng, Z Dong, C Li, W Wang, Y Yan, J Zhang. Molecular dynamics simulations of CO2/N2 separation through two-dimensional graphene oxide membranes. Journal of Physical Chemistry C, 2016, 120(45): 2606–26066
https://doi.org/10.1021/acs.jpcc.6b06940
254 B Monteiro, A R Nabais, F A Almeida Paz, L Cabrita, L C Branco, I M Marrucho, L A Neves, C C Pereira. Membranes with a low loading of metal–organic framework-supported ionic liquids for CO2/N2 separation in CO2 capture. Energy Technology (Weinheim), 2017, 5(12): 2158–2162
https://doi.org/10.1002/ente.201700228
255 C G Morris, N M Jacques, H G Godfrey, T Mitra, D Fritsch, Z Lu, C A Murray, J Potter, T M Cobb, F Yuan, C C Tang, S Yang, M Schröder. Stepwise observation and quantification and mixed matrix membrane separation of CO2 within a hydroxy-decorated porous host. Chemical Science (Cambridge), 2017, 8(4): 3239–3248
https://doi.org/10.1039/C6SC04343G
256 N A H M Nordin, S M Racha, T Matsuura, N Misdan, N A A Sani, A F Ismail, A Mustafa. Facile modification of ZIF-8 mixed matrix membrane for CO2/CH4 separation: synthesis and preparation. RSC Advances, 2015, 5(54): 43110–43120
https://doi.org/10.1039/C5RA02230D
257 Z Rui, J B James, A Kasik, Y Lin. Metal-organic framework membrane process for high purity CO2 production. AIChE Journal. American Institute of Chemical Engineers, 2016, 62(11): 3836–3841
https://doi.org/10.1002/aic.15367
258 T Watanabe, S Keskin, S Nair, D S Sholl. Computational identification of a metal organic framework for high selectivity membrane-based CO2/CH4 separations: Cu (hfipbb)(H2 hfipbb) 0.5. Physical Chemistry Chemical Physics, 2009, 11(48): 11389–11394
https://doi.org/10.1039/b918254n
259 D Wu, G Maurin, Q Yang, C Serre, H Jobic, C Zhong. Computational exploration of a Zr-carboxylate based metal-organic framework as a membrane material for CO2 capture. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(6): 1657–1661
https://doi.org/10.1039/C3TA13651E
260 H Yin, J Wang, Z Xie, J Yang, J Bai, J Lu, Y Zhang, D Yin, J Y Lin. A highly permeable and selective amino-functionalized MOF CAU-1 membrane for CO2-N2 separation. Chemical Communications, 2014, 50(28): 3699–3701
https://doi.org/10.1039/C4CC00068D
261 S Kelman, H Lin, E S Sanders, B D Freeman. CO2/C2H6 separation using solubility selective membranes. Journal of Membrane Science, 2007, 305(1-2): 57–68
https://doi.org/10.1016/j.memsci.2007.07.035
262 B T Low, Y Xiao, T S Chung, Y Liu. Simultaneous occurrence of chemical grafting, cross-linking, and etching on the surface of polyimide membranes and their impact on H2/CO2 separation. Macromolecules, 2008, 41(4): 1297–1309
https://doi.org/10.1021/ma702360p
263 M Modigell, M Schumacher, V V Teplyakov, V B Zenkevich. A membrane contactor for efficient CO2 removal in biohydrogen production. Desalination, 2008, 224(1-3): 186–190
https://doi.org/10.1016/j.desal.2007.02.092
264 W Yave, A Car, J Wind, K V Peinemann. Nanometric thin film membranes manufactured on square meter scale: ultra-thin films for CO2 capture. Nanotechnology, 2010, 21(39): 395301
https://doi.org/10.1088/0957-4484/21/39/395301
265 Y Zhang, Z Wang, S Wang. Synthesis and characteristics of novel fixed carrier membrane for CO2 separation. Chemistry Letters, 2002, 31(4): 430–431
https://doi.org/10.1246/cl.2002.430
266 A L Khan, X Li, I F Vankelecom. Mixed-gas CO2/CH4 and CO2/N2 separation with sulfonated PEEK membranes. Journal of Membrane Science, 2011, 372(1-2): 87–96
https://doi.org/10.1016/j.memsci.2011.01.056
267 T J Kim, M W Uddin, M Sandru, M B Hägg. The effect of contaminants on the composite membranes for CO2 separation and challenges in up-scaling of the membranes. Energy Procedia, 2011, 4: 737–744
https://doi.org/10.1016/j.egypro.2011.01.113
268 L Zhang, Y Xiao, T S Chung, J Jiang. Mechanistic understanding of CO2-induced plasticization of a polyimide membrane: a combination of experiment and simulation study. Polymer, 2010, 51(19): 4439–4447
https://doi.org/10.1016/j.polymer.2010.07.032
269 J Chang, S W Kang. CO2 separation through poly(vinylidene fluoride-co-hexafluoropropylene) membrane by selective ion channel formed by tetrafluoroboric acid. Chemical Engineering Journal, 2016, 306: 1189–1192
https://doi.org/10.1016/j.cej.2016.08.022
270 X Fu, X Li, R Guo, J Zhang, X Cao. Block copolymer membranes based on polyetheramine and methyl-containing polyisophthalamides designed for efficient CO2 separation. High Performance Polymers, 2018, 30(9): 1064–1074
https://doi.org/10.1177/0954008317737822
271 M Ghadiri, A Marjani, S Shirazian. Mathematical modeling and simulation of CO2 stripping from monoethanolamine solution using nano porous membrane contactors. International Journal of Greenhouse Gas Control, 2013, 13: 1–8
https://doi.org/10.1016/j.ijggc.2012.11.030
272 S Kanehashi, M Kishida, T Kidesaki, R Shindo, S Sato, T Miyakoshi, K Nagai. CO2 separation properties of a glassy aromatic polyimide composite membranes containing high-content 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ionic liquid. Journal of Membrane Science, 2013, 430: 211–222
https://doi.org/10.1016/j.memsci.2012.12.003
273 L Kwisnek, S Heinz, J S Wiggins, S Nazarenko. Multifunctional thiols as additives in UV-cured PEG-diacrylate membranes for CO2 separation. Journal of Membrane Science, 2011, 369(1-2): 429–436
https://doi.org/10.1016/j.memsci.2010.12.022
274 J H Lee, J P Jung, E Jang, K B Lee, Y J Hwang, B K Min, J H Kim. PEDOT-PSS embedded comb copolymer membranes with improved CO2 capture. Journal of Membrane Science, 2016, 518: 21–30
https://doi.org/10.1016/j.memsci.2016.06.025
275 Y Li, Q Xin, S Wang, Z Tian, H Wu, Y Liu, Z Jiang. Trapping bound water within a polymer electrolyte membrane of calcium phosphotungstate for efficient CO2 capture. Chemical Communications, 2015, 51(10): 1901–1904
https://doi.org/10.1039/C4CC09021G
276 K Lindqvist, S Roussanaly, R Anantharaman. Multi-stage membrane processes for CO2 capture from cement industry. Energy Procedia, 2014, 63: 6476–6483
https://doi.org/10.1016/j.egypro.2014.11.683
277 Z Ma, Z Qiao, Z Wang, X Cao, Y He, J Wang, S Wang. CO2 separation enhancement of the membrane by modifying the polymer with a small molecule containing amine and ester groups. Royal Society of Chemistry Advances, 2014, 4(41): 21313–21317
https://doi.org/10.1039/c4ra01107d
278 A Mondal, M Barooah, B Mandal. Effect of single and blended amine carriers on CO2 separation from CO2/N2 mixtures using crosslinked thin-film poly(vinyl alcohol) composite membrane. International Journal of Greenhouse Gas Control, 2015, 39: 27–28
https://doi.org/10.1016/j.ijggc.2015.05.002
279 A Mondal, B Mandal. Synthesis and characterization of crosslinked poly(vinyl alcohol)/poly(allylamine)/2-amino-2-hydroxymethyl-1,3-propanediol/polysulfone composite membrane for CO2/N2 separation. Journal of Membrane Science, 2013, 446: 383–394
https://doi.org/10.1016/j.memsci.2013.06.052
280 E Ricci, M Minelli, M G De Angelis. A multiscale approach to predict the mixed gas separation performance of glassy polymeric membranes for CO2 capture: the case of CO2/CH4 mixture in Matrimid®. Journal of Membrane Science, 2017, 539: 88–100
https://doi.org/10.1016/j.memsci.2017.05.068
281 S Liu, G Liu, W Wei, F Xiangli, W Jin. Ceramic supported PDMS and PEGDA composite membranes for CO2 separation. Chinese Journal of Chemical Engineering, 2013, 21(4): 348–356
https://doi.org/10.1016/S1004-9541(13)60478-4
282 M Sandru, T J Kim, W Capala, M Huijbers, M B Hägg. Pilot scale testing of polymeric membranes for CO2 capture from coal fired power plants. Energy Procedia, 2013, 37: 6473–6480
https://doi.org/10.1016/j.egypro.2013.06.577
283 H H Tseng, A K Itta, T H Weng, Y L Li. SBA-15/CMS composite membrane for H2 purification and CO2 capture: effect of pore size, pore volume, and loading weight on separation performance. Microporous and Mesoporous Materials, 2013, 180: 270–279
https://doi.org/10.1016/j.micromeso.2013.07.003
284 S Wang, X Li, H Wu, Z Tian, Q Xin, G He, D Peng, S Chen, Y Yin, Z Jiang, M D Guiver. Advances in high permeability polymer-based membrane materials for CO2 separations. Energy & Environmental Science, 2016, 9(6): 1863–1890
https://doi.org/10.1039/C6EE00811A
285 G Zainab, N Iqbal, A A Babar, C Huang, X Wang, J Yu, B Ding. Free-standing, spider-web-like polyamide/carbon nanotube composite nanofibrous membrane impregnated with polyethyleneimine for CO2 capture. Composites Communications, 2017, 6: 41–47
https://doi.org/10.1016/j.coco.2017.09.001
286 K J Kim, S H Park, W W So, D J Ahn, S J Moon. CO2 separation performances of composite membranes of 6FDA-based polyimides with a polar group. Journal of Membrane Science, 2003, 211(1): 41–49
https://doi.org/10.1016/S0376-7388(02)00316-2
287 K Okabe, M Nakamura, H Mano, M Teramoto, K Yamada. Separation and recovery of CO2 by membrane/absorption hybrid method. In: Proceedings of the Eighth Intenational Conference on Greenhouse Gas Control Technologies. Amsterdam: Elsevier, 2006, 409–412
288 G J Francisco, A Chakma, X Feng. Membranes comprising of alkanolamines incorporated into poly(vinyl alcohol) matrix for CO2/N2 separation. Journal of Membrane Science, 2007, 303(1-2): 54–63
https://doi.org/10.1016/j.memsci.2007.06.065
289 S Sridhar, R Suryamurali, B Smitha, T Aminabhavi. Development of crosslinked poly(ether-block-amide) membrane for CO2/CH4 separation. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2007, 297(1-3): 267–274
https://doi.org/10.1016/j.colsurfa.2006.10.054
290 T Kai, T Kouketsu, S Duan, S Kazama, K Yamada. Development of commercial-sized dendrimer composite membrane modules for CO2 removal from flue gas. Separation and Purification Technology, 2008, 63(3): 524–530
https://doi.org/10.1016/j.seppur.2008.06.012
291 M R Kosuri, W J Koros. Defect-free asymmetric hollow fiber membranes from Torlon®, a polyamide-imide polymer, for high-pressure CO2 separations. Journal of Membrane Science, 2008, 320(1-2): 65–72
https://doi.org/10.1016/j.memsci.2008.03.062
292 M R Kosuri, W J Koros. Asymmetric hollow fiber membranes for separation of CO2 from hydrocarbons and fluorocarbons at high-pressure conditions relevant to C2F4 polymerization. Industrial & Engineering Chemistry Research, 2009, 48(23): 10577–10583
https://doi.org/10.1021/ie900803z
293 M Safari, A Ghanizadeh, M M Montazer Rahmati. Optimization of membrane-based CO2-removal from natural gas using simple models considering both pressure and temperature effects. International Journal of Greenhouse Gas Control, 2009, 3(1): 3–10
https://doi.org/10.1016/j.ijggc.2008.05.001
294 R Xing, W W Ho. Synthesis and characterization of crosslinked polyvinylalcohol/polyethyleneglycol blend membranes for CO2/CH4 separation. Journal of the Taiwan Institute of Chemical Engineers, 2009, 40(6): 654–662
https://doi.org/10.1016/j.jtice.2009.05.004
295 W Yave, A Car, S S Funari, S P Nunes, K V Peinemann. CO2-philic polymer membrane with extremely high separation performance. Macromolecules, 2009, 43(1): 326–333
https://doi.org/10.1021/ma901950u
296 H Cong, B Yu. Aminosilane cross-linked PEG/PEPEG/PPEPG membranes for CO2/N2 and CO2/H2 separation. Industrial & Engineering Chemistry Research, 2010, 49(19): 9363–9369
https://doi.org/10.1021/ie1012568
297 H B Park, S H Han, C H Jung, Y M Lee, A J Hill. Thermally rearranged (TR) polymer membranes for CO2 separation. Journal of Membrane Science, 2010, 359(1-2): 11–24
https://doi.org/10.1016/j.memsci.2009.09.037
298 S R Reijerkerk, M H Knoef, K Nijmeijer, M Wessling. Poly(ethylene glycol) and poly(dimethyl siloxane): combining their advantages into efficient CO2 gas separation membranes. Journal of Membrane Science, 2010, 352(1-2): 126–135
https://doi.org/10.1016/j.memsci.2010.02.008
299 W Yave, A Szymczyk, N Yave, Z Roslaniec. Design, synthesis, characterization and optimization of PTT-b-PEO copolymers: a new membrane material for CO2 separation. Journal of Membrane Science, 2010, 362(1-2): 407–416
https://doi.org/10.1016/j.memsci.2010.06.060
300 X Yu, Z Wang, Z Wei, S Yuan, J Zhao, J Wang, S Wang. Novel tertiary amino containing thin film composite membranes prepared by interfacial polymerization for CO2 capture. Journal of Membrane Science, 2010, 362(1-2): 265–278
https://doi.org/10.1016/j.memsci.2010.06.043
301 A L Khan, X Li, I F Vankelecom. SPEEK/Matrimid blend membranes for CO2 separation. Journal of Membrane Science, 2011, 380(1-2): 55–62
https://doi.org/10.1016/j.memsci.2011.06.030
302 L Peters, A Hussain, M Follmann, T Melin, M B Hägg. CO2 removal from natural gas by employing amine absorption and membrane technology—a technical and economical analysis. Chemical Engineering Journal, 2011, 172(2-3): 952–960
https://doi.org/10.1016/j.cej.2011.07.007
303 S R Reijerkerk, R Jordana, K Nijmeijer, M Wessling. Highly hydrophilic, rubbery membranes for CO2 capture and dehydration of flue gas. International Journal of Greenhouse Gas Control, 2011, 5(1): 26–36
https://doi.org/10.1016/j.ijggc.2010.06.014
304 S R Reijerkerk, M Wessling, K Nijmeijer. Pushing the limits of block copolymer membranes for CO2 separation. Journal of Membrane Science, 2011, 378(1-2): 479–484
https://doi.org/10.1016/j.memsci.2011.05.039
305 H Sanaeepur, A E Amooghin, A Moghadassi, A Kargari. Preparation and characterization of acrylonitrile-butadiene-styrene/poly(vinyl acetate) membrane for CO2 removal. Separation and Purification Technology, 2011, 80(3): 499–508
https://doi.org/10.1016/j.seppur.2011.06.003
306 C M Spadaccini, E V Mukerjee, S A Letts, A Maiti, K C O’Brien. Ultrathin polymer membranes for high throughput CO2 capture. Energy Procedia, 2011, 4: 731–736
https://doi.org/10.1016/j.egypro.2011.01.112
307 J Xia, S Liu, T S Chung. Effect of end groups and grafting on the CO2 separation performance of poly(ethylene glycol) based membranes. Macromolecules, 2011, 44(19): 7727–7736
https://doi.org/10.1021/ma201844y
308 F Ahmad, K K Lau, A M Shariff, G Murshid. Process simulation and optimal design of membrane separation system for CO2 capture from natural gas. Computers & Chemical Engineering, 2012, 36: 119–128
https://doi.org/10.1016/j.compchemeng.2011.08.002
309 G Bengtson, S Neumann, V Filiz. Optimization of PIM-membranes for separation of CO2. Procedia Engineering, 2012, 44: 796–798
https://doi.org/10.1016/j.proeng.2012.08.575
310 S H Han, H J Kwon, K Y Kim, J G Seong, C H Park, S Kim, C M Doherty, A W Thornton, A J Hill, A E Lozano, K A Berchtold, Y M Lee. Tuning microcavities in thermally rearranged polymer membranes for CO2 capture. Physical Chemistry Chemical Physics, 2012, 14(13): 4365–4373
https://doi.org/10.1039/c2cp23729f
311 S Kim, Y M Lee. Thermally rearranged (TR) polymer membranes with nanoengineered cavities tuned for CO2 separation, in nanotechnology for sustainable development. New York: Springer, 2012, 265–275
312 M W Uddin, M B Hägg. Natural gas sweetening—the effect on CO2-CH4 separation after exposing a facilitated transport membrane to hydrogen sulfide and higher hydrocarbons. Journal of Membrane Science, 2012, 423: 143–149
https://doi.org/10.1016/j.memsci.2012.08.010
313 T Hu, G Dong, H Li, V Chen. Improved CO2 separation performance with additives of PEG and PEG-PDMS copolymer in poly(2,6-dimethyl-1,4-phenylene oxide) membranes. Journal of Membrane Science, 2013, 432: 13–24
https://doi.org/10.1016/j.memsci.2012.12.034
314 T Kai, I Taniguchi, S Duan, F A Chowdhury, T Saito, K Yamazaki, K Ikeda, T Ohara, S Asano, S Kazama. Molecular gate membrane: poly(amidoamine) dendrimer/polymer hybrid membrane modules for CO2 capture. Energy Procedia, 2013, 37: 961–968
https://doi.org/10.1016/j.egypro.2013.05.191
315 T J Kim, H Vrålstad, M Sandru, M B Hägg. Separation performance of PVAm composite membrane for CO2 capture at various pH levels. Journal of Membrane Science, 2013, 428: 218–224
https://doi.org/10.1016/j.memsci.2012.10.009
316 S Li, Z Wang, C Zhang, M Wang, F Yuan, J Wang, S Wang. Interfacially polymerized thin film composite membranes containing ethylene oxide groups for CO2 separation. Journal of Membrane Science, 2013, 436: 121–131
https://doi.org/10.1016/j.memsci.2013.02.038
317 R Nasir, H Mukhtar, Z Man, D F Mohshim. Synthesis, characterization and performance study of newly developed amine polymeric membrane (APM) for carbon dioxide (CO2) removal. World Academy of Science, Engineering and Technology, International Journal of Chemical, Molecular, Nuclear. Materials and Metallurgical Engineering, 2013, 7(9): 670–673
318 M M Rahman, V Filiz, S Shishatskiy, C Abetz, S Neumann, S Bolmer, M M Khan, V Abetz. PEBAX® with PEG functionalized POSS as nanocomposite membranes for CO2 separation. Journal of Membrane Science, 2013, 437: 286–297
https://doi.org/10.1016/j.memsci.2013.03.001
319 M Wang, Z Wang, S Li, C Zhang, J Wang, S Wang. A high performance antioxidative and acid resistant membrane prepared by interfacial polymerization for CO2 separation from flue gas. Energy & Environmental Science, 2013, 6(2): 539–551
https://doi.org/10.1039/C2EE23080A
320 E Ahmadpour, A A Shamsabadi, R M Behbahani, M Aghajani, A Kargari. Study of CO2 separation with PVC/Pebax composite membrane. Journal of Natural Gas Science and Engineering, 2014, 21: 518–523
https://doi.org/10.1016/j.jngse.2014.09.021
321 A Constantinou, S Barrass, A Gavriilidis. CO2 absorption in polytetrafluoroethylene membrane microstructured contactor using aqueous solutions of amines. Industrial & Engineering Chemistry Research, 2014, 53(22): 9236–9242
https://doi.org/10.1021/ie403444t
322 A Hussain, H Nasir, M Ahsan. Process design analyses of CO2 capture from natural gas by polymer membrane. Journal of the Chemical Society of Pakistan, 2014, 36(3): 411–421
323 H Lin, Z He, Z Sun, J Vu, A Ng, M Mohammed, J Kniep, T C Merkel, T Wu, R C Lambrecht. CO2-selective membranes for hydrogen production and CO2 capture-Part I: Membrane development. Journal of Membrane Science, 2014, 457: 149–161
https://doi.org/10.1016/j.memsci.2014.01.020
324 A Mondal, B Mandal. Novel CO2-selective cross-linked poly(vinyl alcohol)/polyvinylpyrrolidone blend membrane containing amine carrier for CO2-N2 separation: synthesis, characterization, and gas permeation study. Industrial & Engineering Chemistry Research, 2014, 53(51): 19736–19746
https://doi.org/10.1021/ie500597p
325 A Mondal, B Mandal. CO2 separation using thermally stable crosslinked poly(vinyl alcohol) membrane blended with polyvinylpyrrolidone/polyethyleneimine/tetraethylenepentamine. Journal of Membrane Science, 2014, 460: 126–138
https://doi.org/10.1016/j.memsci.2014.02.040
326 N Nabian, A Ghoreyshi, A Rahimpour, M Shakeri. Effect of polymer concentration on the structure and performance of polysulfone flat membrane for CO2 absorption in membrane contactor. Iranian Journal of Chemical Engineering, 2014, 11(2): 79
327 A A Salih, C Yi, H Peng, B Yang, L Yin, W Wang. Interfacially polymerized polyetheramine thin film composite membranes with PDMS inter-layer for CO2 separation. Journal of Membrane Science, 2014, 472: 110–118
https://doi.org/10.1016/j.memsci.2014.08.025
328 L Wang, Y Li, S Li, P Ji, C Jiang. Preparation of composite poly(ether block amide) membrane for CO2 capture. Journal of Energy Chemistry, 2014, 23(6): 717–725
https://doi.org/10.1016/S2095-4956(14)60204-7
329 S Wang, Y Liu, S Huang, H Wu, Y Li, Z Tian, Z Jiang. Pebax-PEG-MWCNT hybrid membranes with enhanced CO2 capture properties. Journal of Membrane Science, 2014, 460: 62–70
https://doi.org/10.1016/j.memsci.2014.02.036
330 C A Scholes, C P Ribeiro, S E Kentish, B D Freeman. Thermal rearranged poly(benzoxazole)/polyimide blended membranes for CO2 separation. Separation and Purification Technology, 2014, 124: 134–140
https://doi.org/10.1016/j.seppur.2014.01.012
331 Z Wang, M Fang, Q Ma, Z Zhao, T Wang, Z Luo. Membrane stripping technology for CO2 desorption from CO2-rich absorbents with low energy consumption. Energy Procedia, 2014, 63: 765–772
https://doi.org/10.1016/j.egypro.2014.11.085
332 J Zhou, M M Tran, A T Haldeman, J Jin, E H Wagener, S M Husson. Perfluorocyclobutyl polymer thin-film composite membranes for CO2 separations. Journal of Membrane Science, 2014, 450: 478–486
https://doi.org/10.1016/j.memsci.2013.09.031
333 S Gilassi, N Rahmanian. Mathematical modelling and numerical simulation of CO2/CH4 separation in a polymeric membrane. Applied Mathematical Modelling, 2015, 39(21): 6599–6611
https://doi.org/10.1016/j.apm.2015.02.010
334 I Khalilinejad, H Sanaeepur, A Kargari. Preparation of poly (ether-6-block amide)/PVC thin film composite membrane for CO2 separation: effect of top layer thickness and operating parameters. Journal of Membrane Science and Research, 2015, 1(3): 124–129
335 S J Kim, H Jeon, D J Kim, J H Kim. High-performance polymer membranes with multi-functional amphiphilic micelles for CO2 capture. ChemSusChem, 2015, 8(22): 3783–3792
https://doi.org/10.1002/cssc.201501063
336 P Li, Z Wang, Y Liu, S Zhao, J Wang, S Wang. A synergistic strategy via the combination of multiple functional groups into membranes towards superior CO2 separation performances. Journal of Membrane Science, 2015, 476: 243–255
https://doi.org/10.1016/j.memsci.2014.11.050
337 P Li, Z Wang, W Li, Y Liu, J Wang, S Wang. High-performance multilayer composite membranes with mussel-inspired polydopamine as a versatile molecular bridge for CO2 separation. ACS Applied Materials & Interfaces, 2015, 7(28): 15481–15493
https://doi.org/10.1021/acsami.5b03786
338 J Liao, Z Wang, C Gao, M Wang, K Yan, X Xie, S Zhao, J Wang, S Wang. A high performance PVAm-HT membrane containing high-speed facilitated transport channels for CO2 separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(32): 16746–16761
https://doi.org/10.1039/C5TA03238E
339 R Nasir, H Mukhtar, Z Man, M S Shaharun, M Z A Bakar. Effect of fixed carbon molecular sieve (CMS) loading and various di-ethanolamine (DEA) concentrations on the performance of a mixed matrix membrane for CO2/CH4 separation. Royal Society of Chemistry Advances, 2015, 5(75): 60814–60822
https://doi.org/10.1039/C5RA09015F
340 C H Park, J H Lee, J P Jung, B Jung, J H Kim. A highly selective PEGBEM-g-POEM comb copolymer membrane for CO2/N2 separation. Journal of Membrane Science, 2015, 492: 452–460
https://doi.org/10.1016/j.memsci.2015.06.023
341 S Park, A S Lee, Y S Do, S S Hwang, Y M Lee, J H Lee, J S Lee. Rational molecular design of PEOlated ladder-structured polysilsesquioxane membranes for high performance CO2 removal. Chemical Communications, 2015, 51(83): 15308–15311
https://doi.org/10.1039/C5CC06269A
342 J M Scofield, P A Gurr, J Kim, Q Fu, A Halim, S E Kentish, G G Qiao. High-performance thin film composite membranes with well-defined poly(dimethylsiloxane)--poly(ethylene glycol) copolymer additives for CO2 separation. Journal of Polymer Science. Part A, Polymer Chemistry, 2015, 53(12): 1500–1511
https://doi.org/10.1002/pola.27628
343 I Taniguchi, T Kai, S Duan, S Kazama, H Jinnai. A compatible crosslinker for enhancement of CO2 capture of poly(amidoamine) dendrimer-containing polymeric membranes. Journal of Membrane Science, 2015, 475: 175–183
https://doi.org/10.1016/j.memsci.2014.10.015
344 J K Adewole, A L Ahmad. Process modeling and optimization studies of high pressure membrane separation of CO2 from natural gas. Korean Journal of Chemical Engineering, 2016, 33(10): 2998–3010
https://doi.org/10.1007/s11814-016-0165-8
345 Y Chen, W W Ho. High-molecular-weight polyvinylamine/piperazine glycinate membranes for CO2 capture from flue gas. Journal of Membrane Science, 2016, 514: 376–384
https://doi.org/10.1016/j.memsci.2016.05.005
346 F Karamouz, H Maghsoudi, R Yegani. Synthesis and characterization of high permeable PEBA membranes for CO2/CH4 separation. Journal of Natural Gas Science and Engineering, 2016, 35: 980–985
https://doi.org/10.1016/j.jngse.2016.09.036
347 S Mosleh, M Mozdianfard, M Hemmati, G Khanbabaei. Synthesis and characterization of rubbery/glassy blend membranes for CO2/CH4 gas separation. Journal of Polymer Research, 2016, 23(6): 120
https://doi.org/10.1007/s10965-016-1005-6
348 J M Scofield, P A Gurr, J Kim, Q Fu, S E Kentish, G G Qiao. Development of novel fluorinated additives for high performance CO2 separation thin-film composite membranes. Journal of Membrane Science, 2016, 499: 191–200
https://doi.org/10.1016/j.memsci.2015.10.035
349 X Solimando, C Lherbier, J Babin, C Arnal Herault, E Romero, S Acherar, B Jamart Gregoire, D Barth, D Roizard, A Jonquieres. Pseudopeptide bioconjugate additives for CO2 separation membranes. Polymer International, 2016, 65(12): 1464–1473
https://doi.org/10.1002/pi.5240
350 D Wu, L Zhao, V K Vakharia, W Salim, W W Ho. Synthesis and characterization of nanoporous polyethersulfone membrane as support for composite membrane in CO2 separation: from lab to pilot scale. Journal of Membrane Science, 2016, 510: 58–71
https://doi.org/10.1016/j.memsci.2016.03.022
351 N Azizi, M Arzani, H R Mahdavi, T Mohammadi. Synthesis and characterization of poly(ether-block-amide) copolymers/multi-walled carbon nanotube nanocomposite membranes for CO2/CH4 separation. Korean Journal of Chemical Engineering, 2017, 34(9): 2459–2470
https://doi.org/10.1007/s11814-017-0152-8
352 N Azizi, T Mohammadi, R M Behbahani. Synthesis of a new nanocomposite membrane (PEBAX-1074/PEG-400/TiO2) in order to separate CO2 from CH4. Journal of Natural Gas Science and Engineering, 2017, 37: 39–51
https://doi.org/10.1016/j.jngse.2016.11.038
353 N Azizi, T Mohammadi, R M Behbahani. Synthesis of a PEBAX-1074/ZnO nanocomposite membrane with improved CO2 separation performance. Journal of Energy Chemistry, 2017, 26(3): 454–465
https://doi.org/10.1016/j.jechem.2016.11.018
354 A P Isfahani, M Sadeghi, K Wakimoto, A H Gibbons, R Bagheri, E Sivaniah, B Ghalei. Enhancement of CO2 capture by polyethylene glycol-based polyurethane membranes. Journal of Membrane Science, 2017, 542: 143–149
https://doi.org/10.1016/j.memsci.2017.08.006
355 J P Jung, C H Park, J H Lee, Y S Bae, J H Kim. Room-temperature, one-pot process for CO2 capture membranes based on PEMA-g-PPG graft copolymer. Chemical Engineering Journal, 2017, 313: 1615–1622
https://doi.org/10.1016/j.cej.2016.11.031
356 B Prasad, B Mandal. CO2 separation performance by chitosan/tetraethylenepentamine/poly(ether sulfone) composite membrane. Journal of Applied Polymer Science, 2017, 134(34): 45206
https://doi.org/10.1002/app.45206
357 I Taniguchi, N Wada, K Kinugasa, M Higa. CO2 capture by polymeric membranes composed of hyper-branched polymers with dense poly(oxyethylene) comb and poly(amidoamine). Open Physics, 2017, 15(1): 662–670
https://doi.org/10.1515/phys-2017-0077
358 Z Tong, W W Ho. New sterically hindered polyvinylamine membranes for CO2 separation and capture. Journal of Membrane Science, 2017, 543: 202–211
https://doi.org/10.1016/j.memsci.2017.08.057
359 S Himeno, T Tomita, K Suzuki, K Nakayama, K Yajima, S Yoshida. Synthesis and permeation properties of a DDR-type zeolite membrane for separation of CO2/CH4 gaseous mixtures. Industrial & Engineering Chemistry Research, 2007, 46(21): 6989–6997
https://doi.org/10.1021/ie061682n
360 Y C Hudiono, T K Carlisle, J E Bara, Y Zhang, D L Gin, R D Noble. A three-component mixed-matrix membrane with enhanced CO2 separation properties based on zeolites and ionic liquid materials. Journal of Membrane Science, 2010, 350(1-2): 117–123
https://doi.org/10.1016/j.memsci.2009.12.018
361 M Junaidi, C Khoo, C Leo, A Ahmad. The effects of solvents on the modification of SAPO-34 zeolite using 3-aminopropyl trimethoxy silane for the preparation of asymmetric polysulfone mixed matrix membrane in the application of CO2 separation. Microporous and Mesoporous Materials, 2014, 192: 52–59
https://doi.org/10.1016/j.micromeso.2013.10.006
362 J Kim, M Abouelnasr, L C Lin, B Smit. Large-scale screening of zeolite structures for CO2 membrane separations. Journal of the American Chemical Society, 2013, 135(20): 7545–7552
https://doi.org/10.1021/ja400267g
363 D Korelskiy, M Grahn, P Ye, M Zhou, J Hedlund. A study of CO2/CO separation by sub-micron b-oriented MFI membranes. Royal Society of ChemistryAdvances, 2016, 6(70): 65475–65482
https://doi.org/10.1039/C6RA14544B
364 N Kosinov, C Auffret, C Gücüyener, B M Szyja, J Gascon, F Kapteijn, E J Hensen. High flux high-silica SSZ-13 membrane for CO2 separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(32): 13083–13092
https://doi.org/10.1039/C4TA02744B
365 L S Lai, Y F Yeong, K K Lau, A M Shariff. Single and binary CO2/CH4 separation of a zeolitic imidazolate framework-8 membrane. Chemical Engineering & Technology, 2017, 40(6): 1031–1042
https://doi.org/10.1002/ceat.201600297
366 X Li, J E Remias, J K Neathery, K Liu. Liu K. NF/RO faujasite zeolite membrane-ammonia absorption solvent hybrid system for potential post-combustion CO2 capture application. Journal of Membrane Science, 2011, 366(1-2): 220–228
https://doi.org/10.1016/j.memsci.2010.10.007
367 H Maghsoudi, M Soltanieh. Simultaneous separation of H2S and CO2 from CH4 by a high silica CHA-type zeolite membrane. Journal of Membrane Science, 2014, 470: 159–165
https://doi.org/10.1016/j.memsci.2014.07.025
368 K Mizukami, H Takaba, Y Kobayashi, Y Oumi, R V Belosludov, S Takami, M Kubo, A Miyamoto. Molecular dynamics calculations of CO2/N2 mixture through the NaY type zeolite membrane. Journal of Membrane Science, 2001, 188(1): 21–28
https://doi.org/10.1016/S0376-7388(00)00693-1
369 L Sandström, E Sjöberg, J Hedlund. Very high flux MFI membrane for CO2 separation. Journal of Membrane Science, 2011, 380(1-2): 232–240
https://doi.org/10.1016/j.memsci.2011.07.011
370 C Sun, D J Srivastava, P J Grandinetti, P K Dutta. Synthesis of chabazite/polymer composite membrane for CO2/N2 separation. Microporous and Mesoporous Materials, 2016, 230: 208–216
https://doi.org/10.1016/j.micromeso.2016.04.042
371 L Xiang, L Sheng, C Wang, L Zhang, Y Pan, Y Li. Amino-functionalized ZIF-7 nanocrystals: improved intrinsic separation ability and interfacial compatibility in mixed-matrix membranes for CO2/CH4 separation. Advanced Materials, 2017, 29(32): 1606999
https://doi.org/10.1002/adma.201606999
372 X Yin, N Chu, J Yang, J Wang, Z Li. Thin zeolite T/carbon composite membranes supported on the porous alumina tubes for CO2 separation. International Journal of Greenhouse Gas Control, 2013, 15: 55–64
https://doi.org/10.1016/j.ijggc.2013.01.032
373 M Zhou, D Korelskiy, P Ye, M Grahn, J Hedlund. A uniformly oriented MFI membrane for improved CO2 separation. Angewandte Chemie International Edition, 2014, 53(13): 3492–3495
https://doi.org/10.1002/anie.201311324
374 J Kangas, L Sandström, I Malinen, J Hedlund, J Tanskanen. Maxwell-Stefan modeling of the separation of H2 and CO2 at high pressure in an MFI membrane. Journal of Membrane Science, 2013, 435: 186–206
https://doi.org/10.1016/j.memsci.2013.02.026
375 H Lee, S C Park, J S Roh, G H Moon, J E Shin, Y S Kang, H B Park. Metal-organic frameworks grown on a porous planar template with an exceptionally high surface area: promising nanofiller platforms for CO2 separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(43): 22500–22505
https://doi.org/10.1039/C7TA06049A
376 W An, P Swenson, L Wu, T Waller, A Ku, S M Kuznicki. Selective separation of hydrogen from C1/C2 hydrocarbons and CO2 through dense natural zeolite membranes. Journal of Membrane Science, 2011, 369(1-2): 414–419
https://doi.org/10.1016/j.memsci.2010.12.025
377 F Banihashemi, M Pakizeh, A Ahmadpour. CO2 separation using PDMS/ZSM-5 zeolite composite membrane. Separation and Purification Technology, 2011, 79(3): 293–302
https://doi.org/10.1016/j.seppur.2011.02.033
378 T L Chew, A L Ahmad, S Bhatia. Ba-SAPO-34 membrane synthesized from microwave heating and its performance for CO2/CH4 gas separation. Chemical Engineering Journal, 2011, 171(3): 1053–1059
https://doi.org/10.1016/j.cej.2011.05.001
379 L Hao, P Li, T Yang, T S Chung. Room temperature ionic liquid/ZIF-8 mixed-matrix membranes for natural gas sweetening and post-combustion CO2 capture. Journal of Membrane Science, 2013, 436: 221–231
https://doi.org/10.1016/j.memsci.2013.02.034
380 W T Kwon, S R Kim, E B Kim, S Y Bae, Y. H Kim2/CO2 gas separation characteristic of zeolite membrane at high temperature. In: Advanced Materials Research. Zürich, Switzerland: Trans Tech Publications, Ltd., 2007, 267–270
381 L S Lai, Y F Yeong, K K Lau, A M Shariff. Synthesis of zeolitic imidazolate frameworks (ZIF)-8 membrane and its process optimization study in separation of CO2 from natural gas. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2017, 92(2): 420–431
https://doi.org/10.1002/jctb.5021
382 Y Liu, E Hu, E A Khan, Z Lai. Synthesis and characterization of ZIF-69 membranes and separation for CO2/CO mixture. Journal of Membrane Science, 2010, 353(1-2): 36–40
https://doi.org/10.1016/j.memsci.2010.02.023
383 Y Ohta, H Takaba, S I Nakao. A combinatorial dynamic Monte Carlo approach to finding a suitable zeolite membrane structure for CO2/N2 separation. Microporous and Mesoporous Materials, 2007, 101(1-2): 319–323
https://doi.org/10.1016/j.micromeso.2006.12.030
384 Z Song, F Qiu, E W Zaia, Z Wang, M Kunz, J Guo, M Brady, B Mi, J J Urban. Dual-channel, molecular-sieving core/shell ZIF@ MOF architectures as engineered fillers in hybrid membranes for highly selective CO2 separation. Nano Letters, 2017, 17(11): 6752–6758
https://doi.org/10.1021/acs.nanolett.7b02910
385 O Tzialla, C Veziri, X Papatryfon, K Beltsios, A Labropoulos, B Iliev, G Adamova, T Schubert, M Kroon, M Francisco, L F Zubeir, G E Romanos, G N Karanikolos. Zeolite imidazolate framework-ionic liquid hybrid membranes for highly selective CO2 separation. Journal of Physical Chemistry C, 2013, 117(36): 18434–18440
https://doi.org/10.1021/jp4051287
386 J Ramsay, S Kallus. Zeolite membranes. In: Membrane Science and Technology. Vol 6. Amsterdam: Elsevier, 2000, 373–395
387 T Fan, W Xie, X Ji, C Liu, X Feng, X Lu. CO2/N2 separation using supported ionic liquid membranes with green and cost-effective [Choline][Pro]/PEG200 mixtures. Chinese Journal of Chemical Engineering, 2016, 24(11): 1513–1521
https://doi.org/10.1016/j.cjche.2016.03.006
388 L Hu, J Cheng, Y Li, J Liu, L Zhang, J Zhou, K Cen. Composites of ionic liquid and amine-modified SAPO-34 improve CO2 separation of CO2-selective polymer membranes. Applied Surface Science, 2017, 410: 249–258
https://doi.org/10.1016/j.apsusc.2017.03.045
389 D Iarikov, P Hacarlioglu, S Oyama. Supported room temperature ionic liquid membranes for CO2/CH4 separation. Chemical Engineering Journal, 2011, 166(1): 401–406
https://doi.org/10.1016/j.cej.2010.10.060
390 D S Karousos, A I Labropoulos, A Sapalidis, N K Kanellopoulos, B Iliev, T J Schubert, G E Romanos. Nanoporous ceramic supported ionic liquid membranes for CO2 and SO2 removal from flue gas. Chemical Engineering Journal, 2017, 313: 777–790
https://doi.org/10.1016/j.cej.2016.11.005
391 M Karunakaran, L F Villalobos, M Kumar, R Shevate, F H Akhtar, K V Peinemann. Graphene oxide doped ionic liquid ultrathin composite membranes for efficient CO2 capture. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(2): 649–656
https://doi.org/10.1039/C6TA08858A
392 P Li, D R Paul, T S Chung. High performance membranes based on ionic liquid polymers for CO2 separation from the flue gas. Green Chemistry, 2012, 14(4): 1052–1063
https://doi.org/10.1039/c2gc16354c
393 P Li, K Pramoda, T S Chung. CO2 separation from flue gas using polyvinyl-(room temperature ionic liquid)-room temperature ionic liquid composite membranes. Industrial & Engineering Chemistry Research, 2011, 50(15): 9344–9353
https://doi.org/10.1021/ie2005884
394 Y Li, Z Rui, C Xia, M Anderson, Y Lin. Performance of ionic-conducting ceramic/carbonate composite material as solid oxide fuel cell electrolyte and CO2 permeation membrane. Catalysis Today, 2009, 148(3-4): 303–309
https://doi.org/10.1016/j.cattod.2009.08.009
395 Z Liu, C Liu, L Li, W Qin, A Xu. CO2 separation by supported ionic liquid membranes and prediction of separation performance. International Journal of Greenhouse Gas Control, 2016, 53: 79–84
https://doi.org/10.1016/j.ijggc.2016.07.041
396 J G Lu, H Ge, Y Chen, R T Ren, Y Xu, Y X Zhao, X Zhao, H Qian. CO2 capture using a functional protic ionic liquid by membrane absorption. Journal of the Energy Institute, 2017, 90(6): 933–940
https://doi.org/10.1016/j.joei.2016.08.001
397 J G Lu, C T Lu, Y Chen, L Gao, X Zhao, H Zhang, Z W Xu. CO2 capture by membrane absorption coupling process: application of ionic liquids. Applied Energy, 2014, 115: 573–581
https://doi.org/10.1016/j.apenergy.2013.10.045
398 S C Lu, A L Khan, I F Vankelecom. Polysulfone-ionic liquid based membranes for CO2/N2 separation with tunable porous surface features. Journal of Membrane Science, 2016, 518: 10–20
https://doi.org/10.1016/j.memsci.2016.06.031
399 H Mannan, D Mohshim, H Mukhtar, T Murugesan, Z Man, M Bustam. Synthesis, characterization and CO2 separation performance of polyether sulfone/[EMIM][Tf2N] ionic liquid-polymeric membranes (ILPMs). Journal of Industrial and Engineering Chemistry, 2017, 54: 98–106
https://doi.org/10.1016/j.jiec.2017.05.022
400 N A Ramli, N A Hashim, M K Aroua. Prediction of CO2/O2 absorption selectivity using supported ionic liquid membranes (SILMs) for gas-liquid membrane contactor. Chemical Engineering Communications, 2018, 205(3): 295–310
https://doi.org/10.1080/00986445.2017.1387854
401 L C Tomé, D J Patinha, C S Freire, L P N Rebelo, I M Marrucho. CO2 separation applying ionic liquid mixtures: the effect of mixing different anions on gas permeation through supported ionic liquid membranes. Royal Society of Chemistry Advances, 2013, 3(30): 12220–12229
https://doi.org/10.1039/c3ra41269e
402 R Ur Rehman, S Rafiq, N Muhammad, A L Khan, A Ur Rehman, L TingTing, M Saeed, F Jamil, M Ghauri, X Gu. Development of ethanolamine-based ionic liquid membranes for efficient CO2/CH4 separation. Journal of Applied Polymer Science, 2017, 134(44): 45395
https://doi.org/10.1002/app.45395
403 K W Yoon, H Kim, Y S Kang, S W Kang. 1-Butyl-3-methylimidazolium tetrafluoroborate/zinc oxide composite membrane for high CO2 separation performance. Chemical Engineering Journal, 2017, 320: 50–54
https://doi.org/10.1016/j.cej.2017.03.026
404 X M Zhang, Z H Tu, H Li, L Li, Y T Wu, X B Hu. Supported protic-ionic-liquid membranes with facilitated transport mechanism for the selective separation of CO2. Journal of Membrane Science, 2017, 527: 60–67
https://doi.org/10.1016/j.memsci.2017.01.006
405 H Chen, A Kovvali, K Sirkar. Selective CO2 Separation from CO2-N2 mixtures by immobilized glycine-Na-glycerol membranes. Industrial & Engineering Chemistry Research, 2000, 39(7): 2447–2458
https://doi.org/10.1021/ie9908736
406 A Ilyas, N Muhammad, M A Gilani, K Ayub, I F Vankelecom, A L Khan. Supported protic ionic liquid membrane based on 3-(trimethoxysilyl) propan-1-aminium acetate for the highly selective separation of CO2. Journal of Membrane Science, 2017, 543: 301–309
https://doi.org/10.1016/j.memsci.2017.08.071
407 F Ranjbaran, E Kamio, H Matsuyama. Ion gel membrane with tunable inorganic/organic composite network for CO2 separation. Industrial & Engineering Chemistry Research, 2017, 56(44): 12763–12772
https://doi.org/10.1021/acs.iecr.7b03279
408 P Jindaratsamee, Y Shimoyama, A Ito. Amine/glycol liquid membranes for CO2 recovery form air. Journal of Membrane Science, 2011, 385: 171–176
https://doi.org/10.1016/j.memsci.2011.09.038
409 A. Hussain Three stage membrane process for CO2 capture from natural gas. AA, 2017, 50:1
410 M Niwa, H Ohya, Y Tanaka, N Yoshikawa, K Matsumoto, Y Negishi. Separation of gaseous mixtures of CO2 and CH4 using a composite microporous glass membrane on ceramic tubing. Journal of Membrane Science, 1988, 39(3): 301–314
https://doi.org/10.1016/S0376-7388(00)80936-9
411 S Saha, A Chakma. Separation of CO2 from gas mixtures with liquid membranes. Energy Conversion and Management, 1992, 33(5-8): 413–420
https://doi.org/10.1016/0196-8904(92)90038-X
412 L Xu, L Zhang, H Chen. Study on CO2 removal in air by hydrogel membranes. Desalination, 2002, 148(1-3): 309–313
https://doi.org/10.1016/S0011-9164(02)00722-1
413 K Jordal, R Bredesen, H Kvamsdal, O Bolland. Integration of H2-separating membrane technology in gas turbine processes for CO2 capture. Energy, 2004, 29(9-10): 1269–1278
https://doi.org/10.1016/j.energy.2004.03.086
414 S Li, J L Falconer, R D Noble. SAPO-34 membranes for CO2/CH4 separation. Journal of Membrane Science, 2004, 241(1): 121–135
https://doi.org/10.1016/j.memsci.2004.04.027
415 J H Moon, H Ahn, S H Hyun, C H Lee. Separation characteristics of tetrapropylammoniumbromide templating silica/alumina composite membrane in CO2/N2, CO2/H2 and CH4/H2 systems. Korean Journal of Chemical Engineering, 2004, 21(2): 477–487
https://doi.org/10.1007/BF02705438
416 S Li, G Alvarado, R D Noble, J L Falconer. Effects of impurities on CO2/CH4 separations through SAPO-34 membranes. Journal of Membrane Science, 2005, 251(1-2): 59–66
https://doi.org/10.1016/j.memsci.2004.10.036
417 S Li, J G Martinek, J L Falconer, R D Noble, T Q Gardner. High-pressure CO2/CH4 separation using SAPO-34 membranes. Industrial & Engineering Chemistry Research, 2005, 44(9): 3220–3228
https://doi.org/10.1021/ie0490177
418 K Jordal, O Bolland, B F Möller, T Torisson. Optimization with genetic algorithms of a gas turbine cycle with H2-separating membrane reactor for CO2 capture. International Journal of Green Energy, 2005, 2(2): 167–180
https://doi.org/10.1081/GE-200058975
419 Y Sakamoto, K Nagata, K Yogo, K Yamada. Preparation and CO2 separation properties of amine-modified mesoporous silica membranes. Microporous and Mesoporous Materials, 2007, 101(1-2): 303–311
https://doi.org/10.1016/j.micromeso.2006.11.007
420 S Xiao, X Feng, R Y Huang. Trimesoyl chloride crosslinked chitosan membranes for CO2/N2 separation and pervaporation dehydration of isopropanol. Journal of Membrane Science, 2007, 306(1-2): 36–46
https://doi.org/10.1016/j.memsci.2007.08.021
421 R Yegani, H Hirozawa, M Teramoto, H Himei, O Okada, T Takigawa, N Ohmura, N Matsumiya, H Matsuyama. Selective separation of CO2 by using novel facilitated transport membrane at elevated temperatures and pressures. Journal of Membrane Science, 2007, 291(1-2): 157–164
https://doi.org/10.1016/j.memsci.2007.01.011
422 S Paul, A K Ghoshal, B Mandal. Theoretical studies on separation of CO2 by single and blended aqueous alkanolamine solvents in flat sheet membrane contactor (FSMC). Chemical Engineering Journal, 2008, 144(3): 352–360
https://doi.org/10.1016/j.cej.2008.01.036
423 T Kai, S Kazama, Y Fujioka. Development of cesium-incorporated carbon membranes for CO2 separation under humid conditions. Journal of Membrane Science, 2009, 342(1-2): 14–21
https://doi.org/10.1016/j.memsci.2009.06.014
424 C Nistor, S Shishatskiy, M Popa, S P Nunes. CO2 selective membranes based on epoxy silane. Revue Roumaine de Chimie, 2009, 54: 603–610
425 S Li, M A Carreon, Y Zhang, H H Funke, R D Noble, J L Falconer. Scale-up of SAPO-34 membranes for CO2/CH4 separation. Journal of Membrane Science, 2010, 352(1-2): 7–13
https://doi.org/10.1016/j.memsci.2010.01.037
426 C A Scholes, K H Smith, S E Kentish, G W Stevens. CO2 capture from pre-combustion processes—strategies for membrane gas separation. International Journal of Greenhouse Gas Control, 2010, 4(5): 739–755
https://doi.org/10.1016/j.ijggc.2010.04.001
427 I Tiscornia, I Kumakiri, R Bredesen, C Téllez, J Coronas. Microporous titanosilicate ETS-10 membrane for high pressure CO2 separation. Separation and Purification Technology, 2010, 73(1): 8–12
https://doi.org/10.1016/j.seppur.2009.07.008
428 N Favre, A C Pierre. Synthesis and behaviour of hybrid polymer-silica membranes made by sol gel process with adsorbed carbonic anhydrase enzyme, in the capture of CO2. Journal of Sol-Gel Science and Technology, 2011, 60(2): 177–188
https://doi.org/10.1007/s10971-011-2577-6
429 A Lotrič, M Sekavčnik, C Kunze, H Spliethoff. Simulation of water-gas shift membrane reactor for integrated gasification combined cycle plant with CO2 capture. Chinese Journal of Mechanical Engineering, 2011, 57(12): 911–926
430 F Z Martin, J W Dijkstra, J Boon, J Meuldijk. A membrane reformer with permeate side combustion for CO2 capture: modeling and design. Energy Procedia, 2011, 4: 707–714
https://doi.org/10.1016/j.egypro.2011.01.109
431 M Ostwal, R P Singh, S F Dec, M T Lusk, J D Way. 3-Aminopropyltriethoxysilane functionalized inorganic membranes for high temperature CO2/N2 separation. Journal of Membrane Science, 2011, 369(1-2): 139–147
https://doi.org/10.1016/j.memsci.2010.11.053
432 S R Venna, M A Carreon. Amino-functionalized SAPO-34 membranes for CO2/CH4 and CO2/N2 separation. Langmuir, 2011, 27(6): 2888–2894
https://doi.org/10.1021/la105037n
433 J L Wade, C Lee, A C West, K S Lackner. Composite electrolyte membranes for high temperature CO2 separation. Journal of Membrane Science, 2011, 369(1-2): 20–29
https://doi.org/10.1016/j.memsci.2010.10.053
434 E Chabanon, D Roizard, E Favre. Modelling strategies of membrane contactor processes for CO2 post-combustion capture: a critical reassessment. Procedia Engineering, 2012, 44: 343–346
https://doi.org/10.1016/j.proeng.2012.08.410
435 C H Lau, D R Paul, T S Chung. Molecular design of nanohybrid gas separation membranes for optimal CO2 separation. Polymer, 2012, 53(2): 454–465
https://doi.org/10.1016/j.polymer.2011.12.011
436 H Li, J Pieterse, J Dijkstra, J Boon, R Van Den Brink, D Jansen. Bench-scale WGS membrane reactor for CO2 capture with co-production of H2. International Journal of Hydrogen Energy, 2012, 37(5): 4139–4143
https://doi.org/10.1016/j.ijhydene.2011.11.135
437 C Madhusoodana, M Patil, T Aminabhavi. Ceramic supported composite membranes of hydroxy-ethyl-cellulose loaded with AL-MCM-41 for CO2 separation. Procedia Engineering, 2012, 44: 108–109
https://doi.org/10.1016/j.proeng.2012.08.326
438 S Modarresi, M Soltanieh, S A Mousavi, I Shabani. Effect of low-frequency oxygen plasma on polysulfone membranes for CO2/CH4 Separation. Journal of Applied Polymer Science, 2012, 124(S1): E199–E204
https://doi.org/10.1002/app.35623
439 W Rongwong, S Boributh, S Assabumrungrat, N Laosiripojana, R Jiraratananon. Simultaneous absorption of CO2 and H2S from biogas by capillary membrane contactor. Journal of Membrane Science, 2012, 392: 38–47
https://doi.org/10.1016/j.memsci.2011.11.050
440 S Smart, J Vente, J D Da Costa. High temperature H2/CO2 separation using cobalt oxide silica membranes. International Journal of Hydrogen Energy, 2012, 37(17): 12700–12707
https://doi.org/10.1016/j.ijhydene.2012.06.031
441 T H Bae, J R Long. CO2/N2 separations with mixed-matrix membranes containing Mg2(dobdc) nanocrystals. Energy & Environmental Science, 2013, 6(12): 3565–3569
https://doi.org/10.1039/c3ee42394h
442 J H Choi, M J Park, J Kim, Y Ko, S H Lee, I Baek. Modelling and analysis of pre-combustion CO2 capture with membranes. Korean Journal of Chemical Engineering, 2013, 30(6): 1187–1194
https://doi.org/10.1007/s11814-013-0042-7
443 D E Koutsonikolas, S P Kaldis, G T Pantoleontos, V T Zaspalis, G P Sakellaropoulos. Techno-economic assessment of polymeric, ceramic and metallic membranes integration in an advanced IGCC process for H2 production and CO2 capture. Trans, 2013, 35: 715–720
444 C B Lee, S W Lee, J S Park, D W Lee, K R Hwang, S K Ryi, S H Kim. Long-term CO2 capture tests of Pd-based composite membranes with module configuration. International Journal of Hydrogen Energy, 2013, 38(19): 7896–7903
https://doi.org/10.1016/j.ijhydene.2013.04.053
445 Y F Lin, C H Chen, K L Tung, T Y Wei, S Y Lu, K S Chang. Mesoporous fluorocarbon-modified silica aerogel membranes enabling long-term continuous CO2 capture with large absorption flux enhancements. ChemSusChem, 2013, 6(3): 437–442
https://doi.org/10.1002/cssc.201200837
446 S K Ryi, C B Lee, S W Lee, J S Park. Pd-based composite membrane and its high-pressure module for pre-combustion CO2 capture. Energy, 2013, 51: 237–242
https://doi.org/10.1016/j.energy.2012.12.039
447 K Zhang, Y Zou, C Su, Z Shao, L Liu, S Wang, S Liu. CO2 and water vapor-tolerant yttria stabilized bismuth oxide (YSB) membranes with external short circuit for oxygen separation with CO2 capture at intermediate temperatures. Journal of Membrane Science, 2013, 427: 168–175
https://doi.org/10.1016/j.memsci.2012.09.015
448 X Zhu, S Chai, C Tian, P F Fulvio, K S Han, E W Hagaman, G M Veith, S M Mahurin, S Brown, H Liu, S Dai. Synthesis of porous, nitrogen-doped adsorption/diffusion carbonaceous membranes for efficient CO2 separation. Macromolecular Rapid Communications, 2013, 34(5): 452–459
https://doi.org/10.1002/marc.201200793
449 Y Zhao, B T Jung, L Ansaloni, W W Ho. Multiwalled carbon nanotube mixed matrix membranes containing amines for high pressure CO2/H2 separation. Journal of Membrane Science, 2014, 459: 233–243
https://doi.org/10.1016/j.memsci.2014.02.022
450 L Deng, M B Hägg. Carbon nanotube reinforced PVAm/PVA blend FSC nanocomposite membrane for CO2/CH4 separation. International Journal of Greenhouse Gas Control, 2014, 26: 127–134
https://doi.org/10.1016/j.ijggc.2014.04.018
451 Y F Lin, C C Ko, C H Chen, K L Tung, K S Chang, T W Chung. Sol-gel preparation of polymethylsilsesquioxane aerogel membranes for CO2 absorption fluxes in membrane contactors. Applied Energy, 2014, 129: 25–31
https://doi.org/10.1016/j.apenergy.2014.05.001
452 R Patel, S J Kim, D K Roh, J H Kim. Synthesis of amphiphilic PCZ-r-PEG nanostructural copolymers and their use in CO2/N2 separation membranes. Chemical Engineering Journal, 2014, 254: 46–53
https://doi.org/10.1016/j.cej.2014.05.122
453 M Z Pedram, M Omidkhah, A E Amooghin. Synthesis and characterization of diethanolamine-impregnated cross-linked polyvinylalcohol/glutaraldehyde membranes for CO2/CH4 separation. Journal of Industrial and Engineering Chemistry, 2014, 20(1): 74–82
https://doi.org/10.1016/j.jiec.2013.04.024
454 H Rabiee, M Soltanieh, S A Mousavi, A Ghadimi. Improvement in CO2/H2 separation by fabrication of poly(ether-b-amide6)/glycerol triacetate gel membranes. Journal of Membrane Science, 2014, 469: 43–58
https://doi.org/10.1016/j.memsci.2014.06.026
455 S K Ryi, S W Lee, J W Park, D K Oh, J S Park, S S Kim. Combined steam and CO2 reforming of methane using catalytic nickel membrane for gas to liquid (GTL) process. Catalysis Today, 2014, 236: 49–56
https://doi.org/10.1016/j.cattod.2013.11.001
456 C A Scholes, M T Ho, A A Aguiar, D E Wiley, G W Stevens, S E Kentish. Membrane gas separation processes for CO2 capture from cement kiln flue gas. International Journal of Greenhouse Gas Control, 2014, 24: 78–86
https://doi.org/10.1016/j.ijggc.2014.02.020
457 H Shi. Synthesis of SAPO-34 zeolite membranes with the aid of crystal growth inhibitors for CO2-CH4 separation. New Journal of Chemistry, 2014, 38(11): 5276–5278
https://doi.org/10.1039/C4NJ01405G
458 I Taniguchi, S Fujikawa. CO2 separation with nano-thick polymeric membrane for pre-combustion. Energy Procedia, 2014, 63: 235–242
https://doi.org/10.1016/j.egypro.2014.11.025
459 H H Tseng, S H Chang, M Y Wey. A carbon gutter layer-modified a-Al2O3 substrate for PPO membrane fabrication and CO2 separation. Journal of Membrane Science, 2014, 454: 51–61
https://doi.org/10.1016/j.memsci.2013.11.046
460 T Wu, B Wang, Z Lu, R Zhou, X Chen. Alumina-supported AlPO-18 membranes for CO2/CH4 separation. Journal of Membrane Science, 2014, 471: 338–346
https://doi.org/10.1016/j.memsci.2014.08.035
461 L Zhang, Y Gong, K S Brinkman, T Wei, S Wang, K Huang. Flux of silver-carbonate membranes for post-combustion CO2 capture: the effects of membrane thickness, gas concentration and time. Journal of Membrane Science, 2014, 455: 162–167
https://doi.org/10.1016/j.memsci.2013.12.077
462 L Zhang, Y Gong, J Yaggie, S Wang, K Romito, K Huang. Surface modified silver-carbonate mixed conducting membranes for high flux CO2 separation with enhanced stability. Journal of Membrane Science, 2014, 453: 36–41
https://doi.org/10.1016/j.memsci.2013.10.067
463 M Azizi, S A Mousavi. CO2/H2 separation using a highly permeable polyurethane membrane: molecular dynamics simulation. Journal of Molecular Structure, 2015, 1100: 401–414
https://doi.org/10.1016/j.molstruc.2015.07.029
464 I Kammakakam, S Nam, T H Kim. Ionic group-mediated crosslinked polyimide membranes for enhanced CO2 separation. Royal Society of Chemistry Advances, 2015, 5(86): 69907–69914
https://doi.org/10.1039/C5RA13081F
465 S Konruang, S Sirijarukul, P Wanichapichart, L Yu, T Chittrakarn. Ultraviolet-ray treatment of polysulfone membranes on the O2/N2 and CO2/CH4 separation performance. Journal of Applied Polymer Science, 2015, 132(25): 42074
https://doi.org/10.1002/app.42074
466 Y F Lin, J M Chang, Q Ye, K L Tung. Hydrophobic fluorocarbon-modified silica aerogel tubular membranes with excellent CO2 recovery ability in membrane contactors. Applied Energy, 2015, 154: 21–25
https://doi.org/10.1016/j.apenergy.2015.04.109
467 N Nabian, A A Ghoreyshi, A Rahimpour, M Shakeri. Performance evaluation and mass transfer study of CO2 absorption in flat sheet membrane contactor using novel porous polysulfone membrane. Korean Journal of Chemical Engineering, 2015, 32(11): 2204–2211
https://doi.org/10.1007/s11814-015-0027-9
468 N C Nwogu, M N Kajama, G Osueke, E Gobina. High performance valuation of CO2 gas separation ceramic membrane system. In: Ao S I, Gelman L, Hukins D W L, Hunter A, Korsunsky A M, eds. Proceedings of the 2015 World Congress on Engineering (WCE 2015). Hong Kong: Newswood Academic Publishing, 2015, 824–827
469 Z Qiao, Z Wang, S Yuan, J Wang, S Wang. Preparation and characterization of small molecular amine modified PVAm membranes for CO2/H2 separation. Journal of Membrane Science, 2015, 475: 290–302
https://doi.org/10.1016/j.memsci.2014.10.034
470 D Y Shin, K R Hwang, J S Park, M J Park. Computational fluid dynamics modeling and analysis of Pd-based membrane module for CO2 capture from H2/CO2 binary gas mixture. Korean Journal of Chemical Engineering, 2015, 32(7): 1414–1421
https://doi.org/10.1007/s11814-014-0346-2
471 C Sun, B Wen, B Bai. Application of nanoporous graphene membranes in natural gas processing: molecular simulations of CH4/CO2, CH4/H2S and CH4/N2 separation. Chemical Engineering Science, 2015, 138: 616–621
https://doi.org/10.1016/j.ces.2015.08.049
472 J Tong, L Zhang, J Fang, M Han, K Huang. Electrochemical capture of CO2 from natural gas using a high-temperature ceramic-carbonate membrane. Journal of the Electrochemical Society, 2015, 162(4): E43–E46
https://doi.org/10.1149/2.0481504jes
473 B Wang, C Sun, Y Li, L Zhao, W W Ho, P K Dutta. Rapid synthesis of faujasite/polyethersulfone composite membrane and application for CO2/N2 separation. Microporous and Mesoporous Materials, 2015, 208: 72–82
https://doi.org/10.1016/j.micromeso.2015.01.020
474 N Wang, A Mundstock, Y Liu, A Huang, J Caro. Amine-modified Mg-MOF-74/CPO-27-Mg membrane with enhanced H2/CO2 separation. Chemical Engineering Science, 2015, 124: 27–36
https://doi.org/10.1016/j.ces.2014.10.037
475 S Wang, Z Tian, J Feng, H Wu, Y Li, Y Liu, X Li, Q Xin, Z Jiang. Enhanced CO2 separation properties by incorporating poly(ethylene glycol)-containing polymeric submicrospheres into polyimide membrane. Journal of Membrane Science, 2015, 473: 310–317
https://doi.org/10.1016/j.memsci.2014.09.035
476 Q Xin, Y Gao, X Wu, C Li, T Liu, Y Shi, Y Li, Z Jiang, H Wu, X Cao. Incorporating one-dimensional aminated titania nanotubes into sulfonated poly(ether ether ketone) membrane to construct CO2-facilitated transport pathways for enhanced CO2 separation. Journal of Membrane Science, 2015, 488: 13–29
https://doi.org/10.1016/j.memsci.2015.02.047
477 W Xing, T Peters, M L Fontaine, A Evans, P P Henriksen, T Norby, R Bredesen. Steam-promoted CO2 flux in dual-phase CO2 separation membranes. Journal of Membrane Science, 2015, 482: 115–119
https://doi.org/10.1016/j.memsci.2015.02.029
478 Y Zheng, N Hu, H Wang, N Bu, F Zhang, R Zhou. Preparation of steam-stable high-silica CHA (SSZ-13) membranes for CO2/CH4 and C2H4/C2H6 separation. Journal of Membrane Science, 2015, 475: 303–310
https://doi.org/10.1016/j.memsci.2014.10.048
479 R Zhou, H Wang, B Wang, X Chen, S Li, M Yu. Defect-patching of zeolite membranes by surface modification using siloxane polymers for CO2 separation. Industrial & Engineering Chemistry Research, 2015, 54(30): 7516–7523
https://doi.org/10.1021/acs.iecr.5b01034
480 Z Dai, L Bai, K N Hval, X Zhang, S Zhang, L Deng. Pebax®/TSIL blend thin film composite membranes for CO2 separation. Science China. Chemistry, 2016, 59(5): 538–546
https://doi.org/10.1007/s11426-016-5574-3
481 G Dong, Y Zhang, J Hou, J Shen, V Chen. Graphene oxide nanosheets based novel facilitated transport membranes for efficient CO2 capture. Industrial & Engineering Chemistry Research, 2016, 55(18): 5403–5414
https://doi.org/10.1021/acs.iecr.6b01005
482 L Dong, C Zhang, Y Bai, D Shi, X Li, H Zhang, M Chen. High-performance PEBA2533-functional MMT mixed matrix membrane containing high-speed facilitated transport channels for CO2/N2 separation. ACS Sustainable Chemistry & Engineering, 2016, 4(6): 3486–3496
https://doi.org/10.1021/acssuschemeng.6b00536
483 H Jeon, D J Kim, M S Park, D Y Ryu, J H Kim. Amphiphilic graft copolymer nanospheres: from colloidal self-assembly to CO2 capture membranes. ACS Applied Materials & Interfaces, 2016, 8(14): 9454–9461
https://doi.org/10.1021/acsami.6b01138
484 S Karimi, D Korelskiy, Y Mortazavi, A A Khodadadi, K Sardari, M Esmaeili, O N Antzutkin, F U Shah, J Hedlund. High flux acetate functionalized silica membranes based on in-situ co-condensation for CO2/N2 separation. Journal of Membrane Science, 2016, 520: 574–582
https://doi.org/10.1016/j.memsci.2016.08.017
485 W Li, Y Zhang, P Su, Z Xu, G Zhang, C Shen, Q Meng. Metal-organic framework channelled graphene composite membranes for H2/CO2 separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(48): 18747–18752
https://doi.org/10.1039/C6TA09362K
486 Y F Lin, J W Kuo. Mesoporous bis(trimethoxysilyl) hexane (BTMSH)/tetraethyl orthosilicate (TEOS)-based hybrid silica aerogel membranes for CO2 capture. Chemical Engineering Journal, 2016, 300: 29–35
https://doi.org/10.1016/j.cej.2016.04.119
487 M R Moradi, M P Chenar, S H Noie. Using PDMS coated TFC-RO membranes for CO2/N2 gas separation: experimental study, modeling and optimization. Polymer Testing, 2016, 56: 287–298
https://doi.org/10.1016/j.polymertesting.2016.10.022
488 M Mubashir, Y F Yeong, K K Lau. Ultrasonic-assisted secondary growth of deca-dodecasil 3 rhombohedral (DD3R) membrane and its process optimization studies in CO2/CH4 separation using response surface methodology. Journal of Natural Gas Science and Engineering, 2016, 30: 50–63
https://doi.org/10.1016/j.jngse.2016.01.015
489 J Pohlmann, M Bram, K Wilkner, T Brinkmann. Pilot scale separation of CO2 from power plant flue gases by membrane technology. International Journal of Greenhouse Gas Control, 2016, 53: 56–64
https://doi.org/10.1016/j.ijggc.2016.07.033
490 Y Qin, J Lv, X Fu, R Guo, X Li, J Zhang, Z Wei. High-performance SPEEK/amino acid salt membranes for CO2 separation. Royal Society of Chemistry Advances, 2016, 6(3): 2252–2258
https://doi.org/10.1039/C5RA25089G
491 S Saedi, F Seidi, F Moradi, X Xiang. Preparation and characterization of an amino-cellulose (AC) derivative for development of thin-film composite membrane for CO2/CH4 separation. Stärke, 2016, 68(7-8): 651–661
https://doi.org/10.1002/star.201500255
492 M Saeed, L Deng. Carbon nanotube enhanced PVA-mimic enzyme membrane for post-combustion CO2 capture. International Journal of Greenhouse Gas Control, 2016, 53: 254–262
https://doi.org/10.1016/j.ijggc.2016.08.017
493 Y Wang, Q Yang, J Li, J Yang, C Zhong. Exploration of nanoporous graphene membranes for the separation of N2 from CO2: a multi-scale computational study. Physical Chemistry Chemical Physics, 2016, 18(12): 8352–8358
https://doi.org/10.1039/C5CP06569K
494 K Wong, P Goh, A F Ismail. Thin film nanocomposite: the next generation selective membrane for CO2 removal. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(41): 15726–15748
https://doi.org/10.1039/C6TA05145F
495 P Zhang, J Tong, Y Jee, K Huang. Stabilizing a high-temperature electrochemical silver-carbonate CO2 capture membrane by atomic layer deposition of a ZrO2 overcoat. Chemical Communications, 2016, 52(63): 9817–9820
https://doi.org/10.1039/C6CC04501D
496 S Zhong, N Bu, R Zhou, W Jin, M Yu, S Li. Aluminophosphate-17 and silicoaluminophosphate-17 membranes for CO2 separations. Journal of Membrane Science, 2016, 520: 507–514
https://doi.org/10.1016/j.memsci.2016.08.010
497 J Benito, J Sánchez Laínez, B Zornoza, S Martín, M Carta, R Malpass Evans, C Téllez, N B McKeown, J Coronas, I Gascón. Ultrathin composite polymeric membranes for CO2/N2 separation with minimum thickness and high CO2 permeance. ChemSusChem, 2017, 10(20): 4014–4017
https://doi.org/10.1002/cssc.201701139
498 K Kgaphola, I Sigalas, M O Daramola. Synthesis and characterization of nanocomposite SAPO-34/ceramic membrane for post-combustion CO2 capture. Asia-Pacific Journal of Chemical Engineering, 2017, 12(6): 894–904
https://doi.org/10.1002/apj.2127
499 A Khakpay, F Rahmani, S Nouranian, P Scovazzo. Molecular insights on the CH4/CO2 separation in nanoporous graphene and graphene oxide separation platforms: adsorbents versus membranes. Journal of Physical Chemistry C, 2017, 121(22): 12308–12320
https://doi.org/10.1021/acs.jpcc.7b03728
500 N U Kim, B J Park, Y Choi, K B Lee, J H Kim. High-performance self-cross-linked PGP-POEM comb copolymer membranes for CO2 capture. Macromolecules, 2017, 50(22): 8938–8947
https://doi.org/10.1021/acs.macromol.7b02024
501 G K Kline, J R Weidman, Q Zhang, R Guo. Studies of the synergistic effects of crosslink density and crosslink inhomogeneity on crosslinked PEO membranes for CO2-selective separations. Journal of Membrane Science, 2017, 544: 25–34
https://doi.org/10.1016/j.memsci.2017.09.002
502 H R Mahdavi, N Azizi, T Mohammadi. Performance evaluation of a synthesized and characterized Pebax1657/PEG1000/g-Al2O3 membrane for CO2/CH4 separation using response surface methodology. Journal of Polymer Research, 2017, 24(5): 67
https://doi.org/10.1007/s10965-017-1228-1
503 D Peng, S Wang, Z Tian, X Wu, Y Wu, H Wu, Q Xin, J Chen, X Cao, Z Jiang. Facilitated transport membranes by incorporating graphene nanosheets with high zinc ion loading for enhanced CO2 separation. Journal of Membrane Science, 2017, 522: 351–362
https://doi.org/10.1016/j.memsci.2016.09.040
504 Y Qu, F Li, M Zhao. Theoretical design of highly efficient CO2/N2 separation membranes based on electric quadrupole distinction. Journal of Physical Chemistry C, 2017, 121(33): 17925–17931
https://doi.org/10.1021/acs.jpcc.7b04921
505 R Selyanchyn, S Fujikawa. Membrane thinning for efficient CO2 capture. Science and Technology of Advanced Materials, 2017, 18(1): 816–827
https://doi.org/10.1080/14686996.2017.1386531
506 S N A Shafie, Z Man, A Idris. Development of polycarbonate-silica matrix membrane for CO2/CH4 separation. In: AIP Conference Proceedings. Melville, NY: AIP Publishing, 2017, 020129
507 C Song, Q Liu, N Ji, S Deng, J Zhao, Y Li, Y Kitamura. Reducing the energy consumption of membrane-cryogenic hybrid CO2 capture by process optimization. Energy, 2017, 124: 29–39
https://doi.org/10.1016/j.energy.2017.02.054
508 I Taniguchi, K Kinugasa, M Toyoda, K Minezaki. Effect of amine structure on CO2 capture by polymeric membranes. Science and Technology of Advanced Materials, 2017, 18(1): 950–958
https://doi.org/10.1080/14686996.2017.1399045
509 P Wang, W Li, C Du, X Zheng, X Sun, Y Yan, J Zhang. CO2/N2 separation via multilayer nanoslit graphene oxide membranes: molecular dynamics simulation study. Computational Materials Science, 2017, 140: 284–289
https://doi.org/10.1016/j.commatsci.2017.09.010
510 S Wang, Y Xie, G He, Q Xin, J Zhang, L Yang, Y Li, H Wu, Y Zhang, M D Guiver, Z Jiang. Graphene oxide membranes with heterogeneous nanodomains for efficient CO2 separations. Angewandte Chemie International Edition, 2017, 56(45): 14246–14251
https://doi.org/10.1002/anie.201708048
511 C Zhang, W Zhang, H Gao, Y Bai, Y Sun, Y Chen. Synthesis and gas transport properties of poly(ionic liquid) based semi-interpenetrating polymer network membranes for CO2/N2 separation. Journal of Membrane Science, 2017, 528: 72–81
https://doi.org/10.1016/j.memsci.2017.01.022
512 Y Zhang, H Wang, Y Zhang, X Ding, J Liu. Thin film composite membranes functionalized with montmorillonite and hydrotalcite nanosheets for CO2/N2 separation. Separation and Purification Technology, 2017, 189: 128–137
https://doi.org/10.1016/j.seppur.2017.07.078
513 L Zhao, P Sang, S Guo, X Liu, J Li, H Zhu, W Guo. Promising monolayer membranes for CO2/N2/CH4 separation: graphdiynes modified respectively with hydrogen, fluorine and oxygen atoms. Applied Surface Science, 2017, 405: 455–464
https://doi.org/10.1016/j.apsusc.2017.02.054
514 L Zhu, M T Swihart, H Lin. Tightening polybenzimidazole (PBI) nanostructure via chemical cross-linking for membrane H2/CO2 separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(37): 19914–19923
https://doi.org/10.1039/C7TA03874G
515 A Constantinou, S Barrass, A Gavriilidis. CO2 absorption in flat membrane microstructured contactors of different wettability using aqueous solution of NaOH. Green Processing and Synthesis, 2018, 7(6): 471–476
https://doi.org/10.1515/gps-2017-0024
516 G Russo, G Prpich, E J Anthony, F Montagnaro, N Jurado, G Di Lorenzo, H G Darabkhani. Selective-exhaust gas recirculation for CO2 capture using membrane technology. Journal of Membrane Science, 2018, 549: 649–659
https://doi.org/10.1016/j.memsci.2017.10.052
517 L Yu, M Kanezashi, H Nagasawa, N Moriyama, T Tsuru, K Ito. Enhanced CO2 separation performance for tertiary amine-silica membranes via thermally induced local liberation of CH3Cl. AIChE Journal. American Institute of Chemical Engineers, 2018, 64(5): 1528–1539
https://doi.org/10.1002/aic.16040
518 N Zhang, D Peng, H Wu, Y Ren, L Yang, X Wu, Y Wu, Z Qu, Z Jiang, X Cao. Significantly enhanced CO2 capture properties by synergy of zinc ion and sulfonate in Pebax-pitch hybrid membranes. Journal of Membrane Science, 2018, 549: 670–679
https://doi.org/10.1016/j.memsci.2017.10.054
519 L Hu, J Cheng, Y Li, J Liu, J Zhou, K Cen. Optimization of coating solution viscosity of hollow fiber-supported polydimethylsiloxane membrane for CO2/H2 separation. Journal of Applied Polymer Science, 2018, 135(5): 45765
https://doi.org/10.1002/app.45765
520 O Ovalle Encinia, H Pfeiffer, J Ortiz Landeros. Ce0.85Sm0.15O2-Sm0.6Sr0.4Al0.3Fe0.7O3 composite for the preparation of dense ceramic-carbonate membranes for CO2 separation. Journal of Membrane Science, 2018, 547: 11–18
https://doi.org/10.1016/j.memsci.2017.10.021
521 A Constantinou, S Barrass, F Pronk, T Bril, D Wenn, J Shaw, A Gavriilidis. CO2 absorption in a high efficiency silicon nitride mesh contactor. Chemical Engineering Journal, 2012, 207: 766–771
https://doi.org/10.1016/j.cej.2012.07.059
522 A Constantinou, A Gavriilidis. CO2 absorption in a microstructured mesh reactor. Industrial & Engineering Chemistry Research, 2010, 49(3): 1041–1049
https://doi.org/10.1021/ie900697u
523 S Li, J L Falconer, R D Noble. SAPO-34 membranes for CO2/CH4 separations: effect of Si/Al ratio. Microporous and Mesoporous Materials, 2008, 110(2-3): 310–317
https://doi.org/10.1016/j.micromeso.2007.06.016
524 S Duan, I Taniguchi, T Kai, S Kazama. Development of poly(amidoamine) dendrimer/polyvinyl alcohol hybrid membranes for CO2 capture at elevated pressures. Energy Procedia, 2013, 37: 924–931
https://doi.org/10.1016/j.egypro.2013.05.187
525 F Ahmad, K K Lau, A M Shariff. Modeling and parametric study for CO2/CH4 separation using membrane processes. World Academy of Science, Engineering and Technology, 2010, 2010(4): 387–392
526 A M Arias, M C Mussati, P L Mores, N J Scenna, J A Caballero, S F Mussati. Optimization of multi-stage membrane systems for CO2 capture from flue gas. International Journal of Greenhouse Gas Control, 2016, 53: 371–390
https://doi.org/10.1016/j.ijggc.2016.08.005
527 D J Couling, K Prakash, W H Green. Analysis of membrane and adsorbent processes for warm syngas cleanup in integrated gasification combined-cycle power with CO2 capture and sequestration. Industrial & Engineering Chemistry Research, 2011, 50(19): 11313–11336
https://doi.org/10.1021/ie200291j
528 M F Hasan, R C Baliban, J A Elia, C A Floudas. Modeling, simulation, and optimization of postcombustion CO2 capture for variable feed concentration and flow rate. 1. Chemical absorption and membrane processes. Industrial & Engineering Chemistry Research, 2012, 51(48): 15642–15664
https://doi.org/10.1021/ie301571d
529 E Johannessen, K Jordal. Study of a H2 separating membrane reactor for methane steam reforming at conditions relevant for power processes with CO2 capture. Energy Conversion and Management, 2005, 46(7-8): 1059–1071
https://doi.org/10.1016/j.enconman.2004.06.030
530 N Jusoh, K K Lau, A M Shariff, Y Yeong. Capture of bulk CO2 from methane with the presence of heavy hydrocarbon using membrane process. International Journal of Greenhouse Gas Control, 2014, 22: 213–222
https://doi.org/10.1016/j.ijggc.2014.01.001
531 N Jusoh, K K Lau, Y F Yeong, A M Shariff. Bulk CO2/CH4 separation for offshore operating conditions using membrane process. Sains Malaysiana, 2016, 45(11): 1707–1714
532 S H Lee, J N Kim, W H Eom, S K Ryi, J S Park, I H Baek. Development of pilot WGS/multi-layer membrane for CO2 capture. Chemical Engineering Journal, 2012, 207: 521–525
https://doi.org/10.1016/j.cej.2012.07.013
533 T C Merkel, X Wei, Z He, L S White, J Wijmans, R W Baker. Selective exhaust gas recycle with membranes for CO2 capture from natural gas combined cycle power plants. Industrial & Engineering Chemistry Research, 2012, 52(3): 1150–1159
https://doi.org/10.1021/ie302110z
534 R Nagumo, S Iwata, H Mori. Simulated process evaluation of synthetic natural gas production based on biomass gasification and potential of CO2 capture using membrane separation Technology. Journal of the Japan Petroleum Institute, 2013, 56(6): 395–400
https://doi.org/10.1627/jpi.56.395
535 P Piroonlerkgul, N Laosiripojana, A Adesina, S Assabumrungrat. Performance of biogas-fed solid oxide fuel cell systems integrated with membrane module for CO2 removal. Chemical Engineering and Processing: Process Intensification, 2009, 48(2): 672–682
https://doi.org/10.1016/j.cep.2008.08.002
536 S Rezvani, Y Huang, D McIlveen Wright, N Hewitt, J D Mondol. Comparative assessment of coal fired IGCC systems with CO2 capture using physical absorption, membrane reactors and chemical looping. Fuel, 2009, 88(12): 2463–2472
https://doi.org/10.1016/j.fuel.2009.04.021
537 C A Scholes, M Simioni, A Qader, G W Stevens, S E Kentish. Membrane gas-solvent contactor trials of CO2 absorption from syngas. Chemical Engineering Journal, 2012, 195: 188–197
https://doi.org/10.1016/j.cej.2012.04.034
538 P Shao, M M Dal Cin, M D Guiver, A Kumar. Simulation of membrane-based CO2 capture in a coal-fired power plant. Journal of Membrane Science, 2013, 427: 451–459
https://doi.org/10.1016/j.memsci.2012.09.044
539 J Shen, G Liu, K Huang, W Jin, K R Lee, N Xu. Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient CO2 capture. Angewandte Chemie, 2015, 127(2): 588–592
https://doi.org/10.1002/ange.201409563
540 A Skorek Osikowska, Ł Bartela, J Kotowicz. Thermodynamic and economic evaluation of a CO2 membrane separation unit integrated into a supercritical coal-fired heat and power plant. Journal of Power Technologies, 2015, 95(3): 201–210
541 J Stanislowski, M Holmes, A Snyder, S Tolbert, T Curran. Advanced CO2 separation technologies: coal gasification, warm-gas cleanup, and hydrogen separation membranes. Energy Procedia, 2013, 37: 2316–2326
https://doi.org/10.1016/j.egypro.2013.06.113
542 M Tuinier, H Hamers, M van Sint Annaland. Techno-economic evaluation of cryogenic CO2 capture—a comparison with absorption and membrane technology. International Journal of Greenhouse Gas Control, 2011, 5(6): 1559–1565
https://doi.org/10.1016/j.ijggc.2011.08.013
543 D Turi, M Ho, M Ferrari, P Chiesa, D Wiley, M C Romano. CO2 capture from natural gas combined cycles by CO2 selective membranes. International Journal of Greenhouse Gas Control, 2017, 61: 168–183
https://doi.org/10.1016/j.ijggc.2017.03.022
544 B Wang, D C Zhu, M C Zhan, W Liu, C S Chen. Combustion of coal-derived CO with membrane-supplied oxygen enabling CO2 capture. AIChE Journal. American Institute of Chemical Engineers, 2007, 53(9): 2481–2484
https://doi.org/10.1002/aic.11238
545 D Yang, Z Wang, J Wang, S Wang. Potential of two-stage membrane system with recycle stream for CO2 capture from postcombustion gas. Energy & Fuels, 2009, 23(10): 4755–4762
https://doi.org/10.1021/ef801109p
546 J Franz, V Scherer. An evaluation of CO2 and H2 selective polymeric membranes for CO2 separation in IGCC processes. Journal of Membrane Science, 2010, 359(1-2): 173–183
https://doi.org/10.1016/j.memsci.2010.01.047
547 Z Wang, S Dong, N Li, X Cao, M Sheng, R Xu, B Wang, H Wu, C Ma, Y Yuan. CO2-selective membranes: how easy is their moving from laboratory to industrial scale? In: Current Trends and Future Developments on (bio-) membranes. Amsterdam: Elsevier, 2018, 75–102
548 P Doran. Chapter 11-Unit Operations, In: Bioprocess Engineering Principles. 2nd ed. London: Elsevier, 2013, 445–595
549 Z Cui, H Muralidhara. Membrane Technology: A Practical Guide to Membrane Technology and Applications in Food and Bioprocessing. Burlington: Elsevier, 2010, 1–270
550 B S Yilbas. The Laser Cutting Process: Analysis and Applications. Amsterdam: Elsevier, 2017, 5–311
551 K Rezzadori, F M Penha, M C Proner, G Zin, J C Petrus, M Di Luccio. Impact of organic solvents on physicochemical properties of nanofiltration and reverse-osmosis membranes. Chemical Engineering & Technology, 2019, 42(12): 2700–2708
https://doi.org/10.1002/ceat.201900020
552 Y T Zhang, X G Dai, G H Xu, L Zhang, H Q Zhang, J D Liu, H L Chen. Modeling of CO2 mass transport across a hollow fiber membrane reactor filled with immobilized enzyme. AIChE Journal. American Institute of Chemical Engineers, 2012, 58(7): 2069–2077
https://doi.org/10.1002/aic.12732
553 Y T Zhang, L Zhang, H L Chen, H M Zhang. Selective separation of low concentration CO2 using hydrogel immobilized CA enzyme based hollow fiber membrane reactors. Chemical Engineering Science, 2010, 65(10): 3199–3207
https://doi.org/10.1016/j.ces.2010.02.010
554 R Singh. Membrane Technology and Engineering for Water Purification: Application, Systems Design and Operation. Oxford: Butterworth-Heinemann, 2014, 1–300
[1] Supplementary Material Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed