School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Controllable Chemical Reaction & Material Chemical Engineering, Hefei 230009, China
For high performance supercapacitors, novel hierarchical yolk-shell a-Ni(OH)2/Mn2O3 microspheres were controllably synthesized using a facile two-step method based on the solvothermal treatment. The unique a-Ni(OH)2 based yolk-shell microstructures decorated with numerous interconnected nanosheets and the hetero-composition features can synergistically enhance reactive site exposure and electron conduction within the microspheres, facilitate charge transfer between electrolyte and electrode materials, and release structural stress during OH− chemisorption/desorption. Moreover, the Mn2O3 sediments distributed over the a-Ni(OH)2 microspheres can serve as an effective protective layer for electrochemical reactions. Consequently, when tested in 1 mol·L−1 KOH aqueous electrolyte for supercapacitors, the yolk-shell a-Ni(OH)2/Mn2O3 microspheres exhibited a considerably high specific capacitance of 2228.6 F·g−1 at 1 A·g−1 and an impressive capacitance retention of 77.7% after 3000 cycles at 10 A·g−1. The proposed a-Ni(OH)2/Mn2O3 microspheres with hetero-composition and unique hierarchical yolk-shell microstructures are highly promising to be used as electrode materials in supercapacitors and other energy storage devices.
Q C Zhu, D Y Zhao, M Y Cheng, J Q Zhou, K A Owusu, L Q Mai, Y Yu. A new view of supercapacitors: integrated supercapacitors. Advanced Energy Materials, 2019, 9(36): 1901081–1901091 https://doi.org/10.1002/aenm.201901081
2
J Yan, S H Li, B B Lan, Y C Wu, P S Lee. Rational design of nanostructured electrode materials toward multifunctional supercapacitors. Advanced Functional Materials, 2020, 30(2): 1902564–1902598 https://doi.org/10.1002/adfm.201902564
3
N Choudhary, C Li, J Moore, N Nagaiah, L Zhai, Y Jung, J Thomas. Asymmetric supercapacitor electrodes and devices. Advanced Materials, 2017, 29(21): 1605336–1605365 https://doi.org/10.1002/adma.201605336
4
S Patrice, Y Gogotsi. Materials for electrochemical capacitors. Nature Materials, 2008, 7(11): 845–854 https://doi.org/10.1038/nmat2297
5
U Thubsuang, S Chotirut, A Thongnok, A Promraksa, M Nisoa, N Manmuanpom, S Wongkasemjit, T Chaisuwan. Facile preparation of polybenzoxazine-based carbon microspheres with nitrogen functionalities: effects of mixed solvents on pore structure and supercapacitive performance. Frontiers of Chemical Science and Engineering, 2020, 14(1): 1–15 https://doi.org/10.1007/s11705-019-1899-8
6
S Bi, H Banda, M Chen, L Niu, M Y Chen, T Z Wu, J S Wang, R X Wang, J M Feng, T Y Chen, M Dincă, A A Kornyshev, G Feng. Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes. Nature Materials, 2020, 19(5): 552–560 https://doi.org/10.1038/s41563-019-0598-7
7
C Choi, D S Ashby, D M Butts, R H DeBlock, Q L Wei, J Lau, B Dunn. Achieving high energy density and high power density with pseudocapacitive materials. Nature Reviews. Materials, 2020, 5(1): 5–19 https://doi.org/10.1038/s41578-019-0142-z
8
S S Mofarah, E Adabifiroozjaei, Y Yao, P Koshy, S Lim, R Webster, X H Liu, R K Nekouei, C Cazorla, Z Liu, et al. Proton-assisted creation of controllable volumetric oxygen vacancies in ultrathin CeO2−x for pseudocapacitive energy storage applications. Nature Communications, 2019, 10(1): 2594–2602 https://doi.org/10.1038/s41467-019-10621-2
9
Y Huang, C Yang, B H Deng, C Wang, Q W Li, C D Thibault, K Huang, K F Huo, H Wu. Nanostructured pseudocapacitors with pH-tunable electrolyte for electrochromic smart windows. Nano Energy, 2019, 66: 104200–104205 https://doi.org/10.1016/j.nanoen.2019.104200
10
A Morag, N Maman, N Froumin, V Ezersky, K Rechav, R Jelinek. Nanostructured nickel/ruthenium/ruthenium-oxide supercapacitor displaying exceptional high frequency response. Advanced Electronic Materials, 2019, 6(1): 1900844–1900852 https://doi.org/10.1002/aelm.201900844
11
X Y Yu, X W Lou. Mixed metal sulfides for electrochemical energy storage and conversion. Advanced Energy Materials, 2018, 8(3): 1701592–1701628 https://doi.org/10.1002/aenm.201701592
12
P Kulkarni, S K Nataraj, R G Balakrishna, D H Nagaraju, M V Reddy. Nanostructured binary and ternary metal sulfides: synthesis methods and their application in energy conversion and storage devices. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(42): 22040–22094 https://doi.org/10.1039/C7TA07329A
13
J Banerjee, K Dutta, M A Kader, S K Nayak. An overview on the recent developments in polyaniline-based supercapacitors. Polymers for Advanced Technologies, 2019, 30(8): 1902–1921 https://doi.org/10.1002/pat.4624
14
S Girl, D Ghosh, C K Das. Growth of vertically aligned tunable polyaniline on graphene/ZrO2 nanocomposites for supercapacitor energy-storage application. Advanced Functional Materials, 2014, 24(9): 1312–1324 https://doi.org/10.1002/adfm.201302158
15
P B Liu, J Yan, Z X Guang, Y Huang, X F Li, W H Huang. Recent advancements of polyaniline-based nanocomposites for supercapacitors. Journal of Power Sources, 2019, 424: 108–130 https://doi.org/10.1016/j.jpowsour.2019.03.094
16
B A Gao, X X Li, K Ding, C Huang, Q W Li, P K Chu, K F Huo. Recent progress in nanostructured transition metal nitrides for advanced electrochemical energy storage. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(1): 14–37 https://doi.org/10.1039/C8TA05760E
17
K Z Li, B C Zhao, J Bai, H Y Ma, Z T Fang, X B Zhu, Y P Sun. A high-energy-density hybrid supercapacitor with P-Ni(OH)2@Co(OH)2 core-shell heterostructure and Fe2O3 nanoneedle arrays as advanced integrated electrodes. Small, 2020, 16(32): 2001974–2001982 https://doi.org/10.1002/smll.202001974
18
Y M Pan, Z S Mei, Z H Yang, W X Zhang, B Pei, H X Yao. Facile synthesis of mesoporous MnO2/C spheres for supercapacitor electrodes. Chemical Engineering Journal, 2014, 242: 397–403 https://doi.org/10.1016/j.cej.2013.04.069
19
Z H Yang, F F Xu, W X Zhang, Z S Mei, B Pei, X Zhu. Controllable preparation of multishelled NiO hollow nanospheres via layer-by-layer self-assembly for supercapacitor application. Journal of Power Sources, 2014, 246: 24–31 https://doi.org/10.1016/j.jpowsour.2013.07.057
20
Z M Shao, X M Fan, X Y Liu, Z H Yang, L Wang, Z X Chen, W X Zhang. Hierarchical micro/nanostructured WO3 with structural water for high-performance pseudocapacitors. Journal of Alloys and Compounds, 2018, 765: 489–496 https://doi.org/10.1016/j.jallcom.2018.06.192
21
J S Xu, X M Fan, Q Xia, Z M Shao, B Pei, Z H Yang, Z X Chen, W X Zhang. A highly atom-efficient strategy to synthesize reduced graphene oxide-Mn3O4 nanoparticles composites for supercapacitors. Journal of Alloys and Compounds, 2016, 685: 949–956 https://doi.org/10.1016/j.jallcom.2016.06.247
22
P Poizot, S Laruelle, S Grugeon, L Dupont, J M Tarascon. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 2000, 407(6803): 496–499 https://doi.org/10.1038/35035045
23
J B Li, W Cao, N Zhou, F Xu, N Chen, Y Liu, G P Du. Hierarchically nanostructured Ni(OH)2-MnO2@C ternary composites derived from Ni-MOFs grown on nickel foam as high-performance integrated electrodes for hybrid supercapacitors. Electrochimica Acta, 2020, 343: 136139–136149 https://doi.org/10.1016/j.electacta.2020.136139
24
M Krishnaveni, C M Suresh, J J Wu, A M Asiri, S Anandan, M Ashokkumar. Synthesis of 3D marigold flower-like rGO/BN/Ni(OH)2 ternary nanocomposites for supercapacitor applications. Sustainable Energy & Fuels, 2020, 4(6): 3090–3101 https://doi.org/10.1039/D0SE00227E
25
M M Mohammed, A Abd-Elrahim, D M Chun. One-step deposition of a Ni(OH)2-graphene hybrid prepared by vacuum kinetic spray for high energy density hybrid supercapacitor. Materials Chemistry and Physics, 2020, 244: 122701–122710 https://doi.org/10.1016/j.matchemphys.2020.122701
26
A S Aricò, P Bruce, B Scrosati, J M Tarascon, W van Schalkwijk. Nanostructured materials for advanced energy conversion and storage devices. Nature Materials, 2005, 4(5): 366–377 https://doi.org/10.1038/nmat1368
27
G H Yu, X Xie, L J Pan, Z N Bao, Y Cui. Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy, 2013, 2(2): 213–234 https://doi.org/10.1016/j.nanoen.2012.10.006
28
G Chen, S L Liaw, B S Li, Y Xu, M Dunwell, S G Deng, H Y Fan, H M Luo. Microwave-assisted synthesis of hybrid CoxNi1–x(OH)2 nanosheets: tuning the composition for high performance supercapacitor. Journal of Power Sources, 2014, 251: 338–343 https://doi.org/10.1016/j.jpowsour.2013.11.070
29
M Li, S H Xu, Y P Zhu, P X Yang, L W Wang, P K Chu. Heterostructured Ni(OH)2-Co(OH)2 composites on 3D ordered Ni-Co nanoparticles fabricated on microchannel plates for advanced miniature supercapacitor. Journal of Alloys and Compounds, 2014, 589: 364–371 https://doi.org/10.1016/j.jallcom.2013.11.230
30
H X Chuo, H Gao, Q Yang, N Zhang, W B Bu, X T Zhang. Rationally designed hierarchical ZnCo2O4/Ni(OH)2 nanostructures for high-performance pseudocapacitor electrodes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(48): 20462–20469 https://doi.org/10.1039/C4TA05319B
31
Q Q Ke, C Guan, M R Zheng, Y T Hu, K H Ho, J Wang. 3D hierarchical SnO2@Ni(OH)2 core–shell nanowire arrays on carbon cloth for energy storage application. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(18): 9538–9542 https://doi.org/10.1039/C5TA01133G
32
H Chen, L F Hu, Y Yan, R C Che, M Chen, L M Wu. One-step fabrication of ultrathin porous nickel hydroxide-manganese dioxide hybrid nanosheets for supercapacitor electrodes with excellent capacitive performance. Advanced Energy Materials, 2013, 3(12): 1636–1646 https://doi.org/10.1002/aenm.201300580
33
Q Ma, W M Hu, D C Peng, R H Shen, X H Xia, H Chen, Y X Chen, H B Liu. Freestanding core-shell Ni(OH)2@MnO2 structure with enhanced energy density and cyclic performance for asymmetric supercapacitors. Journal of Alloys and Compounds, 2019, 803: 866–874 https://doi.org/10.1016/j.jallcom.2019.06.368
34
H Chen, S X Zhou, L M Wu. Porous nickel hydroxide-manganese dioxide-reduced graphene oxide ternary hybrid spheres as excellent supercapacitor electrode materials. ACS Applied Materials & Interfaces, 2014, 6(11): 8621–8630 https://doi.org/10.1021/am5014375
35
X Shi, J Key, S Ji, V Linkov, F S Liu, H Wang, H J Cai, R F Wang. Ni(OH)2 nanoflakes supported on 3D Ni3Se2 nanowire array as highly efficient electrodes for asymmetric supercapacitor and Ni/MH battery. Small, 2019, 15(29): 1802861–1802870 https://doi.org/10.1002/smll.201802861
36
H Jiang, C Z Li, T Sun, J Ma. High-performance supercapacitor material based on Ni(OH)2 nanowire-MnO2 nanoflakes core-shell nanostructures. Chemical Communications (Cambridge), 2012, 48(20): 2606–2608 https://doi.org/10.1039/c2cc18079k
37
Q Ren, R F Wang, H Wang, J L Key, D J L Brett, S Ji, S B Yin, P K Shen. Ranunculus flower-like Ni(OH)2@Mn2O3 as a high specific capacitance cathode material for alkaline supercapacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(20): 7591–7595 https://doi.org/10.1039/C6TA02596J
38
S Yuan, D L Ma, S Wang, Y B Liu, X H Yang, Z Y Cao. Hierarchical porous SnO2/Mn2O3 core/shell microspheres as advanced anode materials for lithium-ion batteries. Materials Letters, 2015, 145: 104–107 https://doi.org/10.1016/j.matlet.2015.01.086
39
J Xu, Y Q Deng, Y Luo, W Mao, X J Yang, Y F Han. Operando Raman spectroscopy and kinetic study of low-temperature CO oxidation on an α-Mn2O3 nanocatalyst. Journal of Catalysis, 2013, 300: 225–234 https://doi.org/10.1016/j.jcat.2013.01.010
40
Y F Han, F X Chen, Z Y Zhong, K Ramesh, L Chen, E Widjaja. Controlled synthesis, characterization, and catalytic properties of Mn2O3 and Mn3O4 nanoparticles supported on mesoporous silica SBA-15. Journal of Physical Chemistry B, 2006, 110(48): 24450–24456 https://doi.org/10.1021/jp064941v
41
S Yuan, W B Chen, L Zhang, Z K Liu, J Q Liu, T Liu, G J Li, Q Wang. Nitrogen-doped graphene-buffered Mn2O3 nanocomposite anodes for fast charging and high discharge capacity lithium-ion batteries. Small, 2019, 15(50): 1903311–1903319 https://doi.org/10.1002/smll.201903311
42
L Y Feng, J K Sun, Y H Liu, X X Li, L Ye, L J Zhao. 3D sponge-like porous structure of Mn2O3 tiny nanosheets coated on Ni(OH)2/Mn2O3 nanosheet arrays for quasi-solid-state asymmetric supercapacitors with high performance. Chemical Engineering Journal, 2018, 339: 61–70 https://doi.org/10.1016/j.cej.2018.01.123
43
S Ramesh, K Karuppasamy, S Msolli, H S Kim, H S Kim, J H Kim. A nanocrystalline structured NiO/MnO2@nitrogen-doped graphene oxide hybrid nanocomposite for high performance supercapacitors. New Journal of Chemistry, 2017, 41(24): 15517–15527 https://doi.org/10.1039/C7NJ03730A
44
Y Y Ma, R F Wang, H Wang, J Key, S Ji. Control of MnO2 nanocrystal shape from tremella to nanobelt for ehancement of the oxygen reduction reaction activity. Journal of Power Sources, 2015, 280: 526–532 https://doi.org/10.1016/j.jpowsour.2015.01.139
45
P Tao, M H Shao, C W Song, S H Wu, M R Cheng, Z Cui. Preparation of porous and hollow Mn2O3 microspheres and their adsorption studies on heavy metal ions from aqueous solutions. Journal of Industrial and Engineering Chemistry, 2014, 20(5): 3128–3133 https://doi.org/10.1016/j.jiec.2013.11.055
46
K S W Sing, D H Everett, R A W Haul, L Moscou, R A Pierotti, J Rouquerol, T Siemieniewska. Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity. Pure and Applied Chemistry, 1985, 54(4): 603–619 https://doi.org/10.1351/pac198557040603
47
Y F Tang, Y Y Liu, S X Yu, Y F Zhao, S C Mu, F M Gao. Hydrothermal synthesis of a flower-like nano-nickel hydroxide for high performance supercapacitors. Electrochimica Acta, 2014, 123: 158–166 https://doi.org/10.1016/j.electacta.2013.12.187
48
T Nathan, M Cloke, S R S Prabaharan. Electrode properties of Mn2O3 nanospheres synthesized by combined sonochemical/solvothermal method for use in electrochemical capacitors. Journal of Nanomaterials, 2008, 2008: 81–88 https://doi.org/10.1155/2008/948183
49
Y F Tang, Y Y Liu, W C Guo, T Chen, H C Wang, S X Yu, F M Gao. Highly oxidized graphene anchored Ni(OH)2 nanoflakes as pseudocapacitor materials for ultrahigh loading electrode with high areal specific capacitance. Journal of Physical Chemistry C, 2014, 118(43): 24866–24876 https://doi.org/10.1021/jp5075779
50
X H Xiong, D Ding, D C Chen, G Waller, Y F Bu, Z X Wang, M L Liu. Three-dimensional ultrathin Ni(OH)2 nanosheets grown on nickel foam for high-performance supercapacitors. Nano Energy, 2015, 11: 154–161 https://doi.org/10.1016/j.nanoen.2014.10.029
51
L Ye, L J Zhao, H Zhang, B Zhang, H Y Wang. One-pot formation of ultra-thin Ni/Co hydroxides with a sheet-like structure for enhanced asymmetric supercapacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(23): 9160–9168 https://doi.org/10.1039/C6TA02436J
52
L Yu, G Q Zhang, C Z Yuan, X W Lou. Hierarchical NiCo2O4@MnO2 core-shell heterostructured nanowire arrays on Ni foam as high-performance supercapacitor electrodes. Chemical Communications, 2013, 49(2): 137–139 https://doi.org/10.1039/C2CC37117K