Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2021, Vol. 15 Issue (5): 1322-1331   https://doi.org/10.1007/s11705-021-2036-z
  本期目录
Novel hierarchical yolk-shell α-Ni(OH)2/Mn2O3 microspheres as high specific capacitance electrode materials for supercapacitors
Xiqing Luo, Miaomiao Jiang, Kun Shi(), Zhangxian Chen, Zeheng Yang(), Weixin Zhang()
School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Controllable Chemical Reaction & Material Chemical Engineering, Hefei 230009, China
 全文: PDF(2696 KB)   HTML
Abstract

For high performance supercapacitors, novel hierarchical yolk-shell a-Ni(OH)2/Mn2O3 microspheres were controllably synthesized using a facile two-step method based on the solvothermal treatment. The unique a-Ni(OH)2 based yolk-shell microstructures decorated with numerous interconnected nanosheets and the hetero-composition features can synergistically enhance reactive site exposure and electron conduction within the microspheres, facilitate charge transfer between electrolyte and electrode materials, and release structural stress during OH chemisorption/desorption. Moreover, the Mn2O3 sediments distributed over the a-Ni(OH)2 microspheres can serve as an effective protective layer for electrochemical reactions. Consequently, when tested in 1 mol·L−1 KOH aqueous electrolyte for supercapacitors, the yolk-shell a-Ni(OH)2/Mn2O3 microspheres exhibited a considerably high specific capacitance of 2228.6 F·g−1 at 1 A·g−1 and an impressive capacitance retention of 77.7% after 3000 cycles at 10 A·g−1. The proposed a-Ni(OH)2/Mn2O3 microspheres with hetero-composition and unique hierarchical yolk-shell microstructures are highly promising to be used as electrode materials in supercapacitors and other energy storage devices.

Key wordsα-Ni(OH)2/Mn2O3    yolk-shell microspheres    electrode material    high specific capacitance    supercapacitors
收稿日期: 2020-09-19      出版日期: 2021-08-30
Corresponding Author(s): Kun Shi,Zeheng Yang,Weixin Zhang   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2021, 15(5): 1322-1331.
Xiqing Luo, Miaomiao Jiang, Kun Shi, Zhangxian Chen, Zeheng Yang, Weixin Zhang. Novel hierarchical yolk-shell α-Ni(OH)2/Mn2O3 microspheres as high specific capacitance electrode materials for supercapacitors. Front. Chem. Sci. Eng., 2021, 15(5): 1322-1331.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-021-2036-z
https://academic.hep.com.cn/fcse/CN/Y2021/V15/I5/1322
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
1 Q C Zhu, D Y Zhao, M Y Cheng, J Q Zhou, K A Owusu, L Q Mai, Y Yu. A new view of supercapacitors: integrated supercapacitors. Advanced Energy Materials, 2019, 9(36): 1901081–1901091
https://doi.org/10.1002/aenm.201901081
2 J Yan, S H Li, B B Lan, Y C Wu, P S Lee. Rational design of nanostructured electrode materials toward multifunctional supercapacitors. Advanced Functional Materials, 2020, 30(2): 1902564–1902598
https://doi.org/10.1002/adfm.201902564
3 N Choudhary, C Li, J Moore, N Nagaiah, L Zhai, Y Jung, J Thomas. Asymmetric supercapacitor electrodes and devices. Advanced Materials, 2017, 29(21): 1605336–1605365
https://doi.org/10.1002/adma.201605336
4 S Patrice, Y Gogotsi. Materials for electrochemical capacitors. Nature Materials, 2008, 7(11): 845–854
https://doi.org/10.1038/nmat2297
5 U Thubsuang, S Chotirut, A Thongnok, A Promraksa, M Nisoa, N Manmuanpom, S Wongkasemjit, T Chaisuwan. Facile preparation of polybenzoxazine-based carbon microspheres with nitrogen functionalities: effects of mixed solvents on pore structure and supercapacitive performance. Frontiers of Chemical Science and Engineering, 2020, 14(1): 1–15
https://doi.org/10.1007/s11705-019-1899-8
6 S Bi, H Banda, M Chen, L Niu, M Y Chen, T Z Wu, J S Wang, R X Wang, J M Feng, T Y Chen, M Dincă, A A Kornyshev, G Feng. Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes. Nature Materials, 2020, 19(5): 552–560
https://doi.org/10.1038/s41563-019-0598-7
7 C Choi, D S Ashby, D M Butts, R H DeBlock, Q L Wei, J Lau, B Dunn. Achieving high energy density and high power density with pseudocapacitive materials. Nature Reviews. Materials, 2020, 5(1): 5–19
https://doi.org/10.1038/s41578-019-0142-z
8 S S Mofarah, E Adabifiroozjaei, Y Yao, P Koshy, S Lim, R Webster, X H Liu, R K Nekouei, C Cazorla, Z Liu, et al. Proton-assisted creation of controllable volumetric oxygen vacancies in ultrathin CeO2−x for pseudocapacitive energy storage applications. Nature Communications, 2019, 10(1): 2594–2602
https://doi.org/10.1038/s41467-019-10621-2
9 Y Huang, C Yang, B H Deng, C Wang, Q W Li, C D Thibault, K Huang, K F Huo, H Wu. Nanostructured pseudocapacitors with pH-tunable electrolyte for electrochromic smart windows. Nano Energy, 2019, 66: 104200–104205
https://doi.org/10.1016/j.nanoen.2019.104200
10 A Morag, N Maman, N Froumin, V Ezersky, K Rechav, R Jelinek. Nanostructured nickel/ruthenium/ruthenium-oxide supercapacitor displaying exceptional high frequency response. Advanced Electronic Materials, 2019, 6(1): 1900844–1900852
https://doi.org/10.1002/aelm.201900844
11 X Y Yu, X W Lou. Mixed metal sulfides for electrochemical energy storage and conversion. Advanced Energy Materials, 2018, 8(3): 1701592–1701628
https://doi.org/10.1002/aenm.201701592
12 P Kulkarni, S K Nataraj, R G Balakrishna, D H Nagaraju, M V Reddy. Nanostructured binary and ternary metal sulfides: synthesis methods and their application in energy conversion and storage devices. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(42): 22040–22094
https://doi.org/10.1039/C7TA07329A
13 J Banerjee, K Dutta, M A Kader, S K Nayak. An overview on the recent developments in polyaniline-based supercapacitors. Polymers for Advanced Technologies, 2019, 30(8): 1902–1921
https://doi.org/10.1002/pat.4624
14 S Girl, D Ghosh, C K Das. Growth of vertically aligned tunable polyaniline on graphene/ZrO2 nanocomposites for supercapacitor energy-storage application. Advanced Functional Materials, 2014, 24(9): 1312–1324
https://doi.org/10.1002/adfm.201302158
15 P B Liu, J Yan, Z X Guang, Y Huang, X F Li, W H Huang. Recent advancements of polyaniline-based nanocomposites for supercapacitors. Journal of Power Sources, 2019, 424: 108–130
https://doi.org/10.1016/j.jpowsour.2019.03.094
16 B A Gao, X X Li, K Ding, C Huang, Q W Li, P K Chu, K F Huo. Recent progress in nanostructured transition metal nitrides for advanced electrochemical energy storage. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(1): 14–37
https://doi.org/10.1039/C8TA05760E
17 K Z Li, B C Zhao, J Bai, H Y Ma, Z T Fang, X B Zhu, Y P Sun. A high-energy-density hybrid supercapacitor with P-Ni(OH)2@Co(OH)2 core-shell heterostructure and Fe2O3 nanoneedle arrays as advanced integrated electrodes. Small, 2020, 16(32): 2001974–2001982
https://doi.org/10.1002/smll.202001974
18 Y M Pan, Z S Mei, Z H Yang, W X Zhang, B Pei, H X Yao. Facile synthesis of mesoporous MnO2/C spheres for supercapacitor electrodes. Chemical Engineering Journal, 2014, 242: 397–403
https://doi.org/10.1016/j.cej.2013.04.069
19 Z H Yang, F F Xu, W X Zhang, Z S Mei, B Pei, X Zhu. Controllable preparation of multishelled NiO hollow nanospheres via layer-by-layer self-assembly for supercapacitor application. Journal of Power Sources, 2014, 246: 24–31
https://doi.org/10.1016/j.jpowsour.2013.07.057
20 Z M Shao, X M Fan, X Y Liu, Z H Yang, L Wang, Z X Chen, W X Zhang. Hierarchical micro/nanostructured WO3 with structural water for high-performance pseudocapacitors. Journal of Alloys and Compounds, 2018, 765: 489–496
https://doi.org/10.1016/j.jallcom.2018.06.192
21 J S Xu, X M Fan, Q Xia, Z M Shao, B Pei, Z H Yang, Z X Chen, W X Zhang. A highly atom-efficient strategy to synthesize reduced graphene oxide-Mn3O4 nanoparticles composites for supercapacitors. Journal of Alloys and Compounds, 2016, 685: 949–956
https://doi.org/10.1016/j.jallcom.2016.06.247
22 P Poizot, S Laruelle, S Grugeon, L Dupont, J M Tarascon. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 2000, 407(6803): 496–499
https://doi.org/10.1038/35035045
23 J B Li, W Cao, N Zhou, F Xu, N Chen, Y Liu, G P Du. Hierarchically nanostructured Ni(OH)2-MnO2@C ternary composites derived from Ni-MOFs grown on nickel foam as high-performance integrated electrodes for hybrid supercapacitors. Electrochimica Acta, 2020, 343: 136139–136149
https://doi.org/10.1016/j.electacta.2020.136139
24 M Krishnaveni, C M Suresh, J J Wu, A M Asiri, S Anandan, M Ashokkumar. Synthesis of 3D marigold flower-like rGO/BN/Ni(OH)2 ternary nanocomposites for supercapacitor applications. Sustainable Energy & Fuels, 2020, 4(6): 3090–3101
https://doi.org/10.1039/D0SE00227E
25 M M Mohammed, A Abd-Elrahim, D M Chun. One-step deposition of a Ni(OH)2-graphene hybrid prepared by vacuum kinetic spray for high energy density hybrid supercapacitor. Materials Chemistry and Physics, 2020, 244: 122701–122710
https://doi.org/10.1016/j.matchemphys.2020.122701
26 A S Aricò, P Bruce, B Scrosati, J M Tarascon, W van Schalkwijk. Nanostructured materials for advanced energy conversion and storage devices. Nature Materials, 2005, 4(5): 366–377
https://doi.org/10.1038/nmat1368
27 G H Yu, X Xie, L J Pan, Z N Bao, Y Cui. Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy, 2013, 2(2): 213–234
https://doi.org/10.1016/j.nanoen.2012.10.006
28 G Chen, S L Liaw, B S Li, Y Xu, M Dunwell, S G Deng, H Y Fan, H M Luo. Microwave-assisted synthesis of hybrid CoxNi1–x(OH)2 nanosheets: tuning the composition for high performance supercapacitor. Journal of Power Sources, 2014, 251: 338–343
https://doi.org/10.1016/j.jpowsour.2013.11.070
29 M Li, S H Xu, Y P Zhu, P X Yang, L W Wang, P K Chu. Heterostructured Ni(OH)2-Co(OH)2 composites on 3D ordered Ni-Co nanoparticles fabricated on microchannel plates for advanced miniature supercapacitor. Journal of Alloys and Compounds, 2014, 589: 364–371
https://doi.org/10.1016/j.jallcom.2013.11.230
30 H X Chuo, H Gao, Q Yang, N Zhang, W B Bu, X T Zhang. Rationally designed hierarchical ZnCo2O4/Ni(OH)2 nanostructures for high-performance pseudocapacitor electrodes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(48): 20462–20469
https://doi.org/10.1039/C4TA05319B
31 Q Q Ke, C Guan, M R Zheng, Y T Hu, K H Ho, J Wang. 3D hierarchical SnO2@Ni(OH)2 core–shell nanowire arrays on carbon cloth for energy storage application. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(18): 9538–9542
https://doi.org/10.1039/C5TA01133G
32 H Chen, L F Hu, Y Yan, R C Che, M Chen, L M Wu. One-step fabrication of ultrathin porous nickel hydroxide-manganese dioxide hybrid nanosheets for supercapacitor electrodes with excellent capacitive performance. Advanced Energy Materials, 2013, 3(12): 1636–1646
https://doi.org/10.1002/aenm.201300580
33 Q Ma, W M Hu, D C Peng, R H Shen, X H Xia, H Chen, Y X Chen, H B Liu. Freestanding core-shell Ni(OH)2@MnO2 structure with enhanced energy density and cyclic performance for asymmetric supercapacitors. Journal of Alloys and Compounds, 2019, 803: 866–874
https://doi.org/10.1016/j.jallcom.2019.06.368
34 H Chen, S X Zhou, L M Wu. Porous nickel hydroxide-manganese dioxide-reduced graphene oxide ternary hybrid spheres as excellent supercapacitor electrode materials. ACS Applied Materials & Interfaces, 2014, 6(11): 8621–8630
https://doi.org/10.1021/am5014375
35 X Shi, J Key, S Ji, V Linkov, F S Liu, H Wang, H J Cai, R F Wang. Ni(OH)2 nanoflakes supported on 3D Ni3Se2 nanowire array as highly efficient electrodes for asymmetric supercapacitor and Ni/MH battery. Small, 2019, 15(29): 1802861–1802870
https://doi.org/10.1002/smll.201802861
36 H Jiang, C Z Li, T Sun, J Ma. High-performance supercapacitor material based on Ni(OH)2 nanowire-MnO2 nanoflakes core-shell nanostructures. Chemical Communications (Cambridge), 2012, 48(20): 2606–2608
https://doi.org/10.1039/c2cc18079k
37 Q Ren, R F Wang, H Wang, J L Key, D J L Brett, S Ji, S B Yin, P K Shen. Ranunculus flower-like Ni(OH)2@Mn2O3 as a high specific capacitance cathode material for alkaline supercapacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(20): 7591–7595
https://doi.org/10.1039/C6TA02596J
38 S Yuan, D L Ma, S Wang, Y B Liu, X H Yang, Z Y Cao. Hierarchical porous SnO2/Mn2O3 core/shell microspheres as advanced anode materials for lithium-ion batteries. Materials Letters, 2015, 145: 104–107
https://doi.org/10.1016/j.matlet.2015.01.086
39 J Xu, Y Q Deng, Y Luo, W Mao, X J Yang, Y F Han. Operando Raman spectroscopy and kinetic study of low-temperature CO oxidation on an α-Mn2O3 nanocatalyst. Journal of Catalysis, 2013, 300: 225–234
https://doi.org/10.1016/j.jcat.2013.01.010
40 Y F Han, F X Chen, Z Y Zhong, K Ramesh, L Chen, E Widjaja. Controlled synthesis, characterization, and catalytic properties of Mn2O3 and Mn3O4 nanoparticles supported on mesoporous silica SBA-15. Journal of Physical Chemistry B, 2006, 110(48): 24450–24456
https://doi.org/10.1021/jp064941v
41 S Yuan, W B Chen, L Zhang, Z K Liu, J Q Liu, T Liu, G J Li, Q Wang. Nitrogen-doped graphene-buffered Mn2O3 nanocomposite anodes for fast charging and high discharge capacity lithium-ion batteries. Small, 2019, 15(50): 1903311–1903319
https://doi.org/10.1002/smll.201903311
42 L Y Feng, J K Sun, Y H Liu, X X Li, L Ye, L J Zhao. 3D sponge-like porous structure of Mn2O3 tiny nanosheets coated on Ni(OH)2/Mn2O3 nanosheet arrays for quasi-solid-state asymmetric supercapacitors with high performance. Chemical Engineering Journal, 2018, 339: 61–70
https://doi.org/10.1016/j.cej.2018.01.123
43 S Ramesh, K Karuppasamy, S Msolli, H S Kim, H S Kim, J H Kim. A nanocrystalline structured NiO/MnO2@nitrogen-doped graphene oxide hybrid nanocomposite for high performance supercapacitors. New Journal of Chemistry, 2017, 41(24): 15517–15527
https://doi.org/10.1039/C7NJ03730A
44 Y Y Ma, R F Wang, H Wang, J Key, S Ji. Control of MnO2 nanocrystal shape from tremella to nanobelt for ehancement of the oxygen reduction reaction activity. Journal of Power Sources, 2015, 280: 526–532
https://doi.org/10.1016/j.jpowsour.2015.01.139
45 P Tao, M H Shao, C W Song, S H Wu, M R Cheng, Z Cui. Preparation of porous and hollow Mn2O3 microspheres and their adsorption studies on heavy metal ions from aqueous solutions. Journal of Industrial and Engineering Chemistry, 2014, 20(5): 3128–3133
https://doi.org/10.1016/j.jiec.2013.11.055
46 K S W Sing, D H Everett, R A W Haul, L Moscou, R A Pierotti, J Rouquerol, T Siemieniewska. Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity. Pure and Applied Chemistry, 1985, 54(4): 603–619
https://doi.org/10.1351/pac198557040603
47 Y F Tang, Y Y Liu, S X Yu, Y F Zhao, S C Mu, F M Gao. Hydrothermal synthesis of a flower-like nano-nickel hydroxide for high performance supercapacitors. Electrochimica Acta, 2014, 123: 158–166
https://doi.org/10.1016/j.electacta.2013.12.187
48 T Nathan, M Cloke, S R S Prabaharan. Electrode properties of Mn2O3 nanospheres synthesized by combined sonochemical/solvothermal method for use in electrochemical capacitors. Journal of Nanomaterials, 2008, 2008: 81–88
https://doi.org/10.1155/2008/948183
49 Y F Tang, Y Y Liu, W C Guo, T Chen, H C Wang, S X Yu, F M Gao. Highly oxidized graphene anchored Ni(OH)2 nanoflakes as pseudocapacitor materials for ultrahigh loading electrode with high areal specific capacitance. Journal of Physical Chemistry C, 2014, 118(43): 24866–24876
https://doi.org/10.1021/jp5075779
50 X H Xiong, D Ding, D C Chen, G Waller, Y F Bu, Z X Wang, M L Liu. Three-dimensional ultrathin Ni(OH)2 nanosheets grown on nickel foam for high-performance supercapacitors. Nano Energy, 2015, 11: 154–161
https://doi.org/10.1016/j.nanoen.2014.10.029
51 L Ye, L J Zhao, H Zhang, B Zhang, H Y Wang. One-pot formation of ultra-thin Ni/Co hydroxides with a sheet-like structure for enhanced asymmetric supercapacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(23): 9160–9168
https://doi.org/10.1039/C6TA02436J
52 L Yu, G Q Zhang, C Z Yuan, X W Lou. Hierarchical NiCo2O4@MnO2 core-shell heterostructured nanowire arrays on Ni foam as high-performance supercapacitor electrodes. Chemical Communications, 2013, 49(2): 137–139
https://doi.org/10.1039/C2CC37117K
[1] FCE-20094-OF-LX_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed