Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2022, Vol. 16 Issue (1): 81-91   https://doi.org/10.1007/s11705-021-2049-7
  本期目录
Crown ether-thiourea conjugates as ion transporters
Zhixing Zhao1, Bailing Tang1, Xiaosheng Yan1(), Xin Wu2(), Zhao Li1, Philip A. Gale2,3(), Yun-Bao Jiang1()
1. Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, iChEM, Xiamen University, Xiamen 361005, China
2. School of Chemistry (F11), The University of Sydney, Sydney, NSW 2006, Australia
3. The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney, NSW 2006, Australia
 全文: PDF(3896 KB)   HTML
Abstract

Na+, Cl and K+ are the most abundant electrolytes present in biological fluids that are essential to the regulation of pH homeostasis, membrane potential and cell volume in living organisms. Herein, we report synthetic crown ether-thiourea conjugates as a cation/anion symporter, which can transport both Na+ and Cl across lipid bilayers with relatively high transport activity. Surprisingly, the ion transport activities were diminished when high concentrations of K+ ions were present outside the vesicles. This unusual behavior resulted from the strong affinity of the transporters for K+ ions, which led to predominant partitioning of the transporters as the K+ complexes in the aqueous phase preventing the transporter incorporation into the membrane. Synthetic membrane transporters with Na+, Cl and K+ transport capabilities may have potential biological and medicinal applications.

Key wordsion transport    thiourea    crown ether    symport
收稿日期: 2020-12-15      出版日期: 2021-12-27
Corresponding Author(s): Xiaosheng Yan,Xin Wu,Philip A. Gale,Yun-Bao Jiang   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2022, 16(1): 81-91.
Zhixing Zhao, Bailing Tang, Xiaosheng Yan, Xin Wu, Zhao Li, Philip A. Gale, Yun-Bao Jiang. Crown ether-thiourea conjugates as ion transporters. Front. Chem. Sci. Eng., 2022, 16(1): 81-91.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-021-2049-7
https://academic.hep.com.cn/fcse/CN/Y2022/V16/I1/81
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Complex Ka/(L·mol–1) n ΔG/(kJ·mol–1) ΔH/(kJ·mol–1) TΔS/(kJ·mol–1)
Azo-2C5+Na+ 7.53 × 104 1.613 ?28.96 ?4.571 24.39
Azo-2C5+K+ 1.82 × 105 2.117 ?30.03 ?6.101 23.93
Azo-2C6+Na+ 4.84 × 104 2.043 ?26.74 ?1.453 25.29
Azo-2C6+K+ 1.46 × 105 2.395 ?29.48 ?4.231 25.25
Tab.1  
Fig.8  
1 X Wu, E N W Howe, P A Gale. Supramolecular transmembrane anion transport: new assays and insights. Accounts of Chemical Research, 2018, 51(8): 1870–1879
https://doi.org/10.1021/acs.accounts.8b00264
2 T M Fyles. How do amphiphiles form ion-conducting channels in membranes. Lessons from linear oligoesters. Accounts of Chemical Research, 2013, 46(12): 2847–2855
https://doi.org/10.1021/ar4000295
3 A P Davis, D N Sheppard, B D Smith. Development of synthetic membrane transporters for anions. Chemical Society Reviews, 2007, 36(2): 348–357
https://doi.org/10.1039/B512651G
4 Z Zhang, J Chen. Atomic structure of the cystic fibrosis transmembrane conductance regulator. Cell, 2016, 167(6): 1586–1597
https://doi.org/10.1016/j.cell.2016.11.014
5 M Konrad, M Vollmer, H H Lemmink, L P W J Van den Heuvel, N Jeck, R Vargas-Poussou, A Lakings, R Ruf, G Deschenes, C Antignac, et al.. Mutations in the chloride channel gene CLCNKB as a cause of classic Bartter syndrome. Journal of the American Society of Nephrology, 2000, 11(8): 1449–1459
6 R Dutzler, E B Campbell, M Cadene, B T Chait, R MacKinnon. X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature, 2002, 415(6869): 287–294
https://doi.org/10.1038/415287a
7 H Valkenier, O Akrawi, P Jurček, K Sleziaková, T Lízal, K Bartik, V Šindelář. Fluorinated bambusurils as highly effective and selective transmembrane Cl−/HCO3− antiporters. Chem, 2019, 5(2): 429–444
https://doi.org/10.1016/j.chempr.2018.11.008
8 H J Clarke, E N W Howe, X Wu, F Sommer, M Yano, M E Light, S Kubik, P A Gale. Transmembrane fluoride transport: direct measurement and selectivity studies. Journal of the American Chemical Society, 2016, 138(50): 16515–16522
https://doi.org/10.1021/jacs.6b10694
9 A Roy, H Joshi, R Ye, J Shen, F Chen, A Aksimentiev, H Zeng. Polyhydrazide-based organic nanotubes as efficient and selective artificial iodide channels. Angewandte Chemie International Edition, 2020, 59(12): 4806–4813
https://doi.org/10.1002/anie.201916287
10 N Busschaert, L E Karagiannidis, M Wenzel, C J E Haynes, N J Wells, P G Young, D Makuc, J Plavec, K A Jolliffe, P A Gale. Synthetic transporters for sulfate: a new method for the direct detection of lipid bilayer sulfate transport. Chemical Science (Cambridge), 2014, 5(3): 1118–1127
https://doi.org/10.1039/c3sc52006d
11 X Wu, L W Judd, E N W Howe, A M Withecombe, V Soto-Cerrato, H Li, N Busschaert, H Valkenier, R Perez-Tomas, D N Sheppard, et al.. Nonprotonophoric electrogenic Cl– transport mediated by valinomycin-like carriers. Chem, 2016, 1(1): 127–146
https://doi.org/10.1016/j.chempr.2016.04.002
12 J T Davis, P A Gale, R Quesada. Advances in anion transport and supramolecular medicinal chemistry. Chemical Society Reviews, 2020, 49(16): 6056–6086
https://doi.org/10.1039/C9CS00662A
13 C Ren, F Zeng, J Shen, F Chen, A Roy, S Zhou, H Ren, H Zeng. Pore-forming monopeptides as exceptionally active anion channels. Journal of the American Chemical Society, 2018, 140(28): 8817–8826
https://doi.org/10.1021/jacs.8b04657
14 M J Spooner, H Li, I Marques, P M R Costa, X Wu, E N W Howe, N Busschaert, S J Moore, M E Light, D N Sheppard, et al.. Fluorinated synthetic anion carriers: experimental and computational insights into transmembrane chloride transport. Chemical Science (Cambridge), 2019, 10(7): 1976–1985
https://doi.org/10.1039/C8SC05155K
15 G W Gokel, A Mukhopadhyay. Synthetic models of cation-conducting channels. Chemical Society Reviews, 2001, 30(5): 274–286
https://doi.org/10.1039/b008667n
16 F H Yu, W A Catterall. Overview of the voltage-gated sodium channel family. Genome Biology, 2003, 4(3): 207
https://doi.org/10.1186/gb-2003-4-3-207
17 A L Goldin. Resurgence of sodium channel research. Annual Review of Physiology, 2001, 63(1): 871–894
https://doi.org/10.1146/annurev.physiol.63.1.871
18 J Payandeh, T Scheuer, N Zheng, W A Catterall. The crystal structure of a voltage-gated sodium channel. Nature, 2011, 475(7356): 353–358
https://doi.org/10.1038/nature10238
19 D P Ryan, L J Ptacek. Episodic neurological channelopathies. Neuron, 2010, 68(2): 282–292
https://doi.org/10.1016/j.neuron.2010.10.008
20 T J Jentsch. Neuronal KCNQ potassium channels: physiology and role in disease. Nature Reviews. Neuroscience, 2000, 1(1): 21–30
https://doi.org/10.1038/35036198
21 M C Sanguinetti, M Tristani-Firouzi. hERG potassium channels and cardiac arrhythmia. Nature, 2006, 440(7083): 463–469
https://doi.org/10.1038/nature04710
22 J M Russell. Sodium-potassium-chloride cotransport. Physiological Reviews, 2000, 80(1): 211–276
https://doi.org/10.1152/physrev.2000.80.1.211
23 D B Simon, F E Karet, J M Hamdan, A D Pietro, S A Sanjad, R P Lifton. Bartter’s syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na-K-2Cl cotransporter NKCC2. Nature Genetics, 1996, 13(2): 183–188
https://doi.org/10.1038/ng0696-183
24 C C Tong, R Quesada, J L Sessler, P A Gale. Meso-Octamethylcalix[4]pyrrole: an old yet new transmembrane ion-pair transporter. Chemical Communications, 2008, (47): 6321–6323
https://doi.org/10.1039/b814988g
25 M G Fisher, P A Gale, J R Hiscock, M B Hursthouse, M E Light, F P Schmidtchen, C C Tong. 1,2,3-Triazole-strapped calix[4]pyrrole: a new membrane transporter for chloride. Chemical Communications, 2009, 21(21): 3017–3019
https://doi.org/10.1039/b904089g
26 A V Koulov, J M Mahoney, B D Smith. Facilitated transport of sodium or potassium chloride across vesicle membranes using a ditopic salt-binding macrobicycle. Organic & Biomolecular Chemistry, 2003, 1(1): 27–29
https://doi.org/10.1039/b208873h
27 J H Lee, J H Lee, Y R Choi, P Kang, M G Choi, K S Jeong. Synthetic K+/Cl‒-selective symporter across a phospholipid membrane. Journal of Organic Chemistry, 2014, 79(14): 6403–6409
https://doi.org/10.1021/jo501145z
28 X H Yu, X J Cai, X Q Hong, K Y Tam, K Zhang, W H Chen. Synthesis and biological evaluation of aza-crown ether-squaramide conjugates as anion/cation symporters. Future Medicinal Chemistry, 2019, 11(10): 1091–1106
https://doi.org/10.4155/fmc-2018-0595
29 Z Sun, M Barboiu, Y M Legrand, E Petit, A Rotaru. Highly selective artificial cholesteryl crown ether K+-channels. Angewandte Chemie International Edition, 2015, 54(48): 14473–14477
https://doi.org/10.1002/anie.201506430
30 A Gilles, M Barboiu. Highly selective artificial K+ channels: an example of selectivity-induced transmembrane potential. Journal of the American Chemical Society, 2016, 138(1): 426–432
https://doi.org/10.1021/jacs.5b11743
31 Y H Li, S Zheng, Y M Legrand, A Gilles, A van der Lee, M Barboiu. Structure-driven selection of adaptive transmembrane Na+ carriers or K+ channels. Angewandte Chemie International Edition, 2018, 57(33): 10520–10524
https://doi.org/10.1002/anie.201802570
32 S Chen, Y Wang, T Nie, C Bao, C Wang, T Xu, Q Lin, D H Qu, X Gong, Y Yang, L Zhu, H Tian. An artificial molecular shuttle operates in lipid bilayers for ion transport. Journal of the American Chemical Society, 2018, 140(51): 17992–17998
https://doi.org/10.1021/jacs.8b09580
33 F Y Wu, Z Li, L Guo, X Wang, M H Lin, Y F Zhao, Y B Jiang. A unique NH-spacer for N-benzamidothiourea based anion sensors. Substituent effect on anion sensing of the ICT dual fluorescent N-(p-dimethylaminobenzamido)-N′-arylthioureas. Organic & Biomolecular Chemistry, 2006, 4(4): 624–630
https://doi.org/10.1039/b513969d
34 A F Li, J H Wang, F Wang, Y B Jiang. Anion complexation and sensing using modified urea and thiourea-based receptors. Chemical Society Reviews, 2010, 39(10): 3729–3745
https://doi.org/10.1039/b926160p
35 M Villa, G Bergamini, P Ceroni, M Baroncini. Photocontrolled self-assembly of azobenzene nanocontainers in water: light-triggered uptake and release of lipophilic molecules. Chemical Communications, 2019, 55(79): 11860–11863
https://doi.org/10.1039/C9CC05925C
36 Z Du, B Ren, X Chang, R Dong, J Peng, Z Tong. Aggregation and rheology of an azobenzene-functionalized hydrophobically modified ethoxylated urethane in aqueous solution. Macromolecules, 2016, 49(13): 4978–4988
https://doi.org/10.1021/acs.macromol.6b00633
37 F Otis, C Racine-Berthiaume, N Voyer. How far can a sodium ion travel within a lipid bilayer? Journal of the American Chemical Society, 2011, 133(17): 6481–6483
https://doi.org/10.1021/ja110336s
38 Y Yang, X Wu, N Busschaert, H Furuta, P A Gale. Dissecting the chloride-nitrate anion transport assay. Chemical Communications, 2017, 53(66): 9230–9233
https://doi.org/10.1039/C7CC04912A
39 A Vargas Jentzsch, D Emery, J Mareda, P Metrangolo, G Resnati, S Matile. Ditopic ion transport systems: anion-π interactions and halogen bonds at work. Angewandte Chemie International Edition, 2011, 50(49): 11675–11678
https://doi.org/10.1002/anie.201104966
40 N Busschaert, M Wenzel, M E Light, P Iglesias-Hernandez, R Perez-Tomas, P A Gale. Structure-activity relationships in tripodal transmembrane anion transporters: the effect of fluorination. Journal of the American Chemical Society, 2011, 133(35): 14136–14148
https://doi.org/10.1021/ja205884y
41 H Valkenier, C J E Haynes, J Herniman, P A Gale, A P Davis. Lipophilic balance—a new design principle for transmembrane anion carriers. Chemical Science (Cambridge), 2014, 5(3): 1128–1134
https://doi.org/10.1039/c3sc52962b
42 C Ren, J Shen, H Zeng. Combinatorial evolution of fast-conducting highly selective K+-channels via modularly tunable directional assembly of crown ethers. Journal of the American Chemical Society, 2017, 139(36): 12338–12341
https://doi.org/10.1021/jacs.7b04335
43 C Ren, F Chen, R Ye, Y S Ong, H Lu, S S Lee, J Y Ying, H Zeng. Molecular swings as highly active ion transporters. Angewandte Chemie International Edition, 2019, 58(24): 8034–8038
https://doi.org/10.1002/anie.201901833
44 R Ye, C Ren, J Shen, N Li, F Chen, A Roy, H Zeng. Molecular ion fishers as highly active and exceptionally selective K+ transporters. Journal of the American Chemical Society, 2019, 141(25): 9788–9792
https://doi.org/10.1021/jacs.9b04096
45 T Liu, C Bao, H Wang, Y Lin, H Jia, L Zhu. Light-controlled ion channels formed by amphiphilic small molecules regulate ion conduction via cis-trans photoisomerization. Chemical Communications, 2013, 49(87): 10311–10313
https://doi.org/10.1039/c3cc45618h
46 Z Sun, A Gilles, I Kocsis, Y M Legrand, E Petit, M Barboiu. Squalyl crown ether self-assembled conjugates: an example of highly selective artificial K+ channels. Chemistry (Weinheim an der Bergstrasse, Germany), 2016, 22(6): 2158–2164
https://doi.org/10.1002/chem.201503979
47 S Schneider, E D Licsandru, I Kocsis, A Gilles, F Dumitru, E Moulin, J Tan, J M Lehn, N Giuseppone, M Barboiu. Columnar self-assemblies of triarylamines as scaffolds for artificial biomimetic channels for ion and for water transport. Journal of the American Chemical Society, 2017, 139(10): 3721–3727
https://doi.org/10.1021/jacs.6b12094
48 X Wu, J R Small, A Cataldo, A M Withecombe, P Turner, P A Gale. Voltage-switchable HCl transport enabled by lipid headgroup-transporter interactions. Angewandte Chemie International Edition, 2019, 58(42): 15142–15147
https://doi.org/10.1002/anie.201907466
49 X Wu, N Busschaert, N J Wells, Y B Jiang, P A Gale. Dynamic covalent transport of amino acids across lipid bilayers. Journal of the American Chemical Society, 2015, 137(4): 1476–1484
https://doi.org/10.1021/ja510063n
50 S P Zheng, L B Huang, Z Sun, M Barboiu. Self-assembled artificial ion-channels toward natural selection of functions. Angewandte Chemie International Edition, 2021, 60(2): 566–597
https://doi.org/10.1002/anie.201915287
[1] FCE-20106-OF-ZZ_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed