Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2022, Vol. 16 Issue (1): 128-135   https://doi.org/10.1007/s11705-021-2080-8
  本期目录
Near-infrared benzodiazoles as small molecule environmentally-sensitive fluorophores
Fabio de Moliner1, Ina Biazruchka2, Karolina Konsewicz1, Sam Benson1, Suraj Singh1, Jun-Seok Lee3(), Marc Vendrell1()
1. Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
2. Molecular Recognition Research Centre, Korea Institute of Science and Technology (KIST) & Bio-Med Program, KIST-School UST, Seoul 02792, Korea
3. Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
 全文: PDF(1933 KB)   HTML
Abstract

The development of fluorophores emitting in the near-infrared spectral window has gained increased attention given their suitable features for biological imaging. In this work, we have optimised a general and straightforward synthetic approach to prepare a small library of near-infrared-emitting C-bridged nitrobenzodiazoles using commercial precursors. C-bridged benzodiazoles have low molecular weight and neutral character as important features that are not common in most near-infrared dyes. We have investigated their fluorescence response in the presence of a wide array of 60 different biomolecules and identified compound 3i as a potential chemosensor to discriminate between Fe2+ and Fe3+ ions in aqueous media.

Key wordsfluorescence    probes    iron    screening    library
收稿日期: 2021-02-23      出版日期: 2021-12-27
Corresponding Author(s): Jun-Seok Lee,Marc Vendrell   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2022, 16(1): 128-135.
Fabio de Moliner, Ina Biazruchka, Karolina Konsewicz, Sam Benson, Suraj Singh, Jun-Seok Lee, Marc Vendrell. Near-infrared benzodiazoles as small molecule environmentally-sensitive fluorophores. Front. Chem. Sci. Eng., 2022, 16(1): 128-135.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-021-2080-8
https://academic.hep.com.cn/fcse/CN/Y2022/V16/I1/128
Fig.1  
Fig.2  
Fig.3  
Fig.4  
1 S J Park, H C Yeo, N Y Kang, H Kim, J Lin, H H Ha, M Vendrell, J S Lee, Y Chandran, D Y Lee, et al.. Mechanistic elements and critical factors of cellular reprogramming revealed by stepwise global gene expression analyses. Stem Cell Research (Amsterdam), 2014, 12(3): 730–741
https://doi.org/10.1016/j.scr.2014.03.002
2 K P Carter, A M Young, A E Palmer. Fluorescent sensors for measuring metal ions in living systems. Chemical Reviews, 2014, 114(8): 4564–4601
https://doi.org/10.1021/cr400546e
3 X Y Jiao, Y Li, J Y Niu, X L Xie, X Wang, B Tang. Small-molecule fluorescent probes for imaging and detection of reactive oxygen, nitrogen, and sulfur species in biological systems. Analitycal Chemistry, 2018, 90(1): 533–555
https://doi.org/10.1021/acs.analchem.7b04234
4 J Y Han, K Burgess. Fluorescent indicators for intracellular pH. Chemical Reviews, 2010, 110(5): 2709–2728
https://doi.org/10.1021/cr900249z
5 P Dedecker, F C De Schryver, J Hofkens. Fluorescent proteins: shine on, you crazy diamond. Journal of the American Chemical Society, 2013, 135(7): 2387–2402
https://doi.org/10.1021/ja309768d
6 J Gong, C Liu, X J Jiao, S He, L C Zhao, X S Zeng. A novel near-infrared fluorescent probe with an improved Stokes shift for specific detection of Hg2+ in mitochondria. Organic & Biomolecular Chemistry, 2020, 18(27): 5238–5244
https://doi.org/10.1039/D0OB00507J
7 H Y Kwon, X Liu, E G Choi, J Y Lee, S Y Choi, J Y Kim, L Wang, S J Park, B Kim, Y A Lee, et al.. Development of a universal fluorescent probe for gram-positive bacteria. Angewandte Chemie International Edition, 2019, 58(25): 8426–8431
https://doi.org/10.1002/anie.201902537
8 N K Devaraj, R Weissleder. Biomedical applications of tetrazine cycloadditions. Accounts of Chemical Research, 2011, 44(9): 816–827
https://doi.org/10.1021/ar200037t
9 G Q Chen, Z Guo, G M Zeng, L Tang. Fluorescent and colorimetric sensors for environmental mercury detection. Analyst (London), 2015, 140(16): 5400–5443
https://doi.org/10.1039/C5AN00389J
10 J Chan, S C Dodani, C J Chang. Reaction-based small-molecule fluorescent probes for chemoselective bioimaging. Nature Chemistry, 2012, 4(12): 973–984
https://doi.org/10.1038/nchem.1500
11 T Q Duong, J S Kim. Fluoro- and chromogenic chemodosimeters for heavy metal ion detection in solution and biospecimens. Chemical Reviews, 2010, 110(10): 6280–6301
https://doi.org/10.1021/cr100154p
12 F Yraola, R Ventura, M Vendrell, A Colombo, J C Fernandez, N de la Figuera, D Fernandez-Forner, M Royo, P Forns, F Albericio. A re-evaluation of the use of rink, BAL, and PAL resins and linkers. QSAR & Combinatorial Science, 2004, 23(2–3): 145–152
https://doi.org/10.1002/qsar.200420013
13 M Sainlos, W S Iskenderian, B Imperiali. A general screening strategy for peptide-based fluorogenic ligands: probes for dynamic studies of PDZ domain-mediated interactions. Journal of the American Chemical Society, 2009, 131(19): 6680–6682
https://doi.org/10.1021/ja900371q
14 T Kalstrup, R Blunck. Dynamics of internal pore opening in K(V) channels probed by a fluorescent unnatural amino acid. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(20): 8272–8277
https://doi.org/10.1073/pnas.1220398110
15 A Sachdeva, K H Wang, T Elliott, J W Chin. Concerted, rapid, quantitative, and site-specific dual labeling of proteins. Journal of the American Chemical Society, 2014, 136(22): 7785–7788
https://doi.org/10.1021/ja4129789
16 J S Lampkowski, D M Uthappa, D D Young. Site-specific incorporation of a fluorescent terphenyl unnatural amino acid. Bioorganic & Medicinal Chemistry Letters, 2015, 25(22): 5277–5280
https://doi.org/10.1016/j.bmcl.2015.09.050
17 L I FitzGerald, L Aurelio, M Chen, D Yuen, J J Rennick, B Graham, A P R Johnston. A molecular sensor to quantify the localization of proteins, DNA and nanoparticles in cells. Nature Communications, 2020, 11(1): 1–13
https://doi.org/10.1038/s41467-020-18082-8
18 A Fernandez, M Vermeren, D Humphries, R Subiros-Funosas, N Barth, L Campana, A MacKinnon, Y Feng, M Vendrell. Chemical modulation of in vivo macrophage function with subpopulation-specific fluorescent prodrug conjugates. ACS Central Science, 2017, 3(9): 995–1005
https://doi.org/10.1021/acscentsci.7b00262
19 R Subiros-Funosas, L Mendive-Tapia, J Sot, J D Pound, N Barth, Y Varela, F M Goni, M Paterson, C D Gregory, F Albericio, et al.. A Trp-BODIPY cyclic peptide for fluorescence labelling of apoptotic bodies. Chemical Communications, 2017, 53(5): 945–948
https://doi.org/10.1039/C6CC07879F
20 N D Barth, R Subiros-Funosas, L Mendive-Tapia, R Duffin, M A Shields, J A Cartwright, S T Henriques, J Sot, F M Goni, R Lavilla, et al.. A fluorogenic cyclic peptide for imaging and quantification of drug-induced apoptosis. Nature Communications, 2020, 11(1): 1–14
https://doi.org/10.1038/s41467-020-17772-7
21 S Osseiran, L A Austin, T M Cannon, C Yan, D M Langenau, C L Evans. Longitudinal monitoring of cancer cell subpopulations in monolayers, 3D spheroids, and xenografts using the photoconvertible dye DiR. Scientific Reports, 2019, 9(1): 1–10
https://doi.org/10.1038/s41598-019-42165-2
22 C Anorma, J Hedhli, T E Bearrood, N W Pino, S H Gardner, H Inaba, P Zhang, Y F Li, D Feng, S E Dibrell, et al.. Surveillance of cancer stem cell plasticity using an isoform-selective fluorescent probe for aldehyde dehydrogenase 1A1. ACS Central Science, 2018, 4(8): 1045–1055
https://doi.org/10.1021/acscentsci.8b00313
23 N D Barth, J A Marwick, M Vendrell, A G Rossi, I Dransfield. The “Phagocytic synapse” and clearance of apoptotic cells. Frontiers in Immunology, 2017, 8: 1708–1717
https://doi.org/10.3389/fimmu.2017.01708
24 Z Yi, Z Luo, N D Barth, X Meng, H Liu, W Bu, A All, M Vendrell, X Liu. In vivo tumor visualization through MRI off-on switching of NaGdF4-CaCO3 nanoconjugates. Advanced Materials, 2019, 31(37): e1901851
https://doi.org/10.1002/adma.201901851
25 A Samanta, M Vendrell, S W Yun, Z Guan, Q H Xu, Y T Chang. A photostable near-infrared protein labeling dye for in vivo imaging. Chemistry, an Asian Journal, 2011, 6(6): 1353–1357
https://doi.org/10.1002/asia.201100041
26 C Chen, R Tian, Y Zeng, C C Chu, G Liu. Activatable fluorescence probes for “turn-on” and ratiometric biosensing and bioimaging: from NIR-I to NIR-II. Bioconjugate Chemistry, 2020, 31(2): 276–292
https://doi.org/10.1021/acs.bioconjchem.9b00734
27 P Y Wang, Y Fan, L F Lu, L Liu, L L Fan, M Y Zhao, Y Xie, C J Xu, F Zhang. NIR-II nanoprobes in-vivo assembly to improve image-guided surgery for metastatic ovarian cancer. Nature Communications, 2018, 9(1): 1–10
https://doi.org/10.1038/s41467-018-05113-8
28 A L Vahrmeijer, M Hutteman, J R van der Vorst, C J H van de Velde, J V Frangioni. Image-guided cancer surgery using near-infrared fluorescence. Nature Reviews. Clinical Oncology, 2013, 10(9): 507–518
https://doi.org/10.1038/nrclinonc.2013.123
29 Z Q Guo, S Park, J Yoon, I Shin. Recent progress in the development of near-infrared fluorescent probes for bioimaging applications. Chemical Society Reviews, 2014, 43(1): 16–29
https://doi.org/10.1039/C3CS60271K
30 R Wirth, P Gao, G U Nienhaus, M Sunbul, A Jaschke. SiRA: a silicon rhodamine-binding aptamer for live-cell super-resolution RNA imaging. Journal of the American Chemical Society, 2019, 141(18): 7562–7571
https://doi.org/10.1021/jacs.9b02697
31 Y Koide, Y Urano, K Hanaoka, W Piao, M Kusakabe, N Saito, T Terai, T Okabe, T Nagano. Development of NIR fluorescent dyes based on Si-rhodamine for in vivo imaging. Journal of the American Chemical Society, 2012, 134(11): 5029–5031
https://doi.org/10.1021/ja210375e
32 A A Ramos, F B Nascimento, T F M de Souza, A T Omori, T M Manieri, G Cerchiaro, A O Ribeiro. Photochemical and photophysical properties of phthalocyanines modified with optically active alcohols. Molecules (Basel, Switzerland), 2015, 20(8): 13575–13590
https://doi.org/10.3390/molecules200813575
33 A K Pal, S Varghese, D B Cordes, A M Z Slawin, I D W Samuel, E Zysman-Colman. Near-infrared fluorescence of silicon phthalocyanine carboxylate esters. Scientific Reports, 2017, 7(1): 1–14
https://doi.org/10.1038/s41598-017-12374-8
34 R C H Wong, P C Lo, D K P Ng. Stimuli responsive phthalocyanine-based fluorescent probes and photosensitizers. Coordination Chemistry Reviews, 2019, 379: 30–46
https://doi.org/10.1016/j.ccr.2017.10.006
35 K Ilina, W M MacCuaig, M Laramie, J N Jeouty, L R McNally, M Henary. Squaraine dyes: molecular design for different applications and remaining challenges. Bioconjugate Chemistry, 2020, 31(2): 194–213
https://doi.org/10.1021/acs.bioconjchem.9b00482
36 G M Xia, H M Wang. Squaraine dyes: the hierarchical synthesis and its application in optical detection. Journal of Photochemistry and Photobiology A Chemistry, 2017, 31: 84–113
https://doi.org/10.1016/j.jphotochemrev.2017.03.001
37 S Mathew, A Yella, P Gao, R Humphry-Baker, B F E Curchod, N Ashari-Astani, I Tavernelli, U Rothlisberger, M K Nazeeruddin, M Gratzel. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nature Chemistry, 2014, 6(3): 242–247
https://doi.org/10.1038/nchem.1861
38 R J Mellanby, J I Scott, I Mair, A Fernandez, L Saul, J Arlt, M Moral, M Vendrell. Tricarbocyanine N-triazoles: the scaffold-of-choice for long-term near-infrared imaging of immune cells in vivo. Chemical Science (Cambridge), 2018, 9(36): 7261–7270
https://doi.org/10.1039/C8SC00900G
39 K Okuda, Y Okabe, T Kadonosono, T Ueno, B G M Youssif, S Kizaka-Kondoh, H Nagasawa. 2-Nitroimidazole-tricarbocyanine conjugate as a near-infrared fluorescent probe for in vivo imaging of tumor hypoxia. Bioconjugate Chemistry, 2012, 23(3): 324–329
https://doi.org/10.1021/bc2004704
40 E D Cosco, J R Caram, O T Bruns, D Franke, R A Day, E P Farr, M G Bawendi, E M Sletten. Flavylium polymethine fluorophores for near- and shortwave infrared imaging. Angewandte Chemie International Edition, 2017, 56(42): 13126–13129
https://doi.org/10.1002/anie.201706974
41 S Benson, A Fernandez, N D Barth, F de Moliner, M H Horrocks, C S Herrington, J L Abad, A Delgado, L Kelly, Z Chang, et al.. SCOTfluors: small, conjugatable, orthogonal, and tunable fluorophores for in vivo imaging of cell metabolism. Angewandte Chemie International Edition, 2019, 58(21): 6911–6915
https://doi.org/10.1002/anie.201900465
42 S W Yun, N Y Kang, S J Park, H H Ha, Y K Kim, J S Lee, Y T Chang. Diversity oriented fluorescence library approach (DOFLA) for live cell imaging probe development. Accounts of Chemical Research, 2014, 47(4): 1277–1286
https://doi.org/10.1021/ar400285f
43 J S Lee, M Vendrell, Y T Chang. Diversity-oriented optical imaging probe development. Current Opinion in Chemical Biology, 2011, 15(6): 760–767
https://doi.org/10.1016/j.cbpa.2011.10.007
44 X Luo, L J Qian, Y S Xiao, Y Tang, Y Zhao, X Wang, L Y Gu, Z H Lei, J M Bao, J H Wu, et al.. A diversity-oriented rhodamine library for wide-spectrum bactericidal agents with low inducible resistance against resistant pathogens. Nature Communications, 2019, 10(1): 1–12
https://doi.org/10.1038/s41467-018-08241-3
45 O N Burchak, L Mugherli, M Ostuni, J J Lacapere, M Y Balakirev. Combinatorial discovery of fluorescent pharmacophores by multicomponent reactions in droplet arrays. Journal of the American Chemical Society, 2011, 133(26): 10058–10061
https://doi.org/10.1021/ja204016e
46 J Kaplan, D M Ward. The essential nature of iron usage and regulation. Current Biology, 2013, 23(15): R642–R646
https://doi.org/10.1016/j.cub.2013.05.033
47 S Dev, J L Babitt. Overview of iron metabolism in health and disease. Hemodialysis International. International Symposium on Home Hemodialysis, 2017, 21: S6–S20
https://doi.org/10.1111/hdi.12542
48 P C Trivedi, J J Bartlett, T Pulinilkunnil. Lysosomal biology and function: modern view of cellular debris bin. Cells, 2020, 9(5): 1131–1166
https://doi.org/10.3390/cells9051131
49 H Xu, D Ren. Lysosomal physiology. Annual Review of Physiology, 2015, 77(1): 57–80
https://doi.org/10.1146/annurev-physiol-021014-071649
[1] FCE-21014-OF-MF_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed