Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2022, Vol. 16 Issue (5): 720-730   https://doi.org/10.1007/s11705-021-2098-y
  本期目录
Poly(vinylidene fluoride-co-hexafluoro propylene) membranes prepared via thermally induced phase separation and application in direct contact membrane distillation
Jun Pan1,2,3, Lixun Zhang1,2,3, Zhaohui Wang1,2,3, Shi-Peng Sun1,2,3, Zhaoliang Cui1,2,3(), Naser Tavajohi4
1. State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
2. National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
3. Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, China
4. Department of Chemistry, Umeå University, 90187 Umeå, Sweden
 全文: PDF(2188 KB)   HTML
Abstract

A non-toxic and environmentally safe diluent, acetyl tributyl citrate, was employed to prepare poly(vinylidene fluoride)-co-hexafluoropropylene membranes via thermally induced phase separation. Effects of the polymer concentration on the phase diagram, membrane morphology, hydrophobicity, pore size, porosity and mechanical properties (tensile stress and elongation at break) were investigated. The results showed that the pore size and porosity tended to decrease with increasing polymer concentration, whereas the contact angle, liquid entry pressure and mechanical properties showed the opposite trend. In direct contact membrane distillation operation with 3.5 wt-% sodium chloride solution as the feed solution, the prepared membranes performed high salt rejection (>99.9%). Furthermore, the prepared membranes retained excellent performance in long-term stability tests regarding the permeate flux and salt rejection.

Key wordspoly(vinylidene fluoride)-co-hexafluoropropylene    thermally induced phase separation    non-toxic diluent    direct contact membrane distillation
收稿日期: 2021-05-19      出版日期: 2022-03-28
Corresponding Author(s): Zhaoliang Cui   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2022, 16(5): 720-730.
Jun Pan, Lixun Zhang, Zhaohui Wang, Shi-Peng Sun, Zhaoliang Cui, Naser Tavajohi. Poly(vinylidene fluoride-co-hexafluoro propylene) membranes prepared via thermally induced phase separation and application in direct contact membrane distillation. Front. Chem. Sci. Eng., 2022, 16(5): 720-730.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-021-2098-y
https://academic.hep.com.cn/fcse/CN/Y2022/V16/I5/720
Membrane Diluents Application Ref.
PVDF-HFP (β-phase) N,N-dimethylformamide Dielectric and piezoelectric materials [19]
PVDF-HFP DBP/bis(2-ethylhexyl) phthalate Lithium-ion batteries [21]
PVDF-HFP DBP Microfiltration [23]
PVDF-HFP/SiO2 DBP/DOP Water-in-oil emulsion separation [24]
PVDF-HFP/PTFE DBP/DOP Water-in-oil emulsion separation [25]
PVDF-HFP/MMT a)
PVDF-HFP/CaHAp b)
N,N-dimethylformamide Removal of fluoride from aqueous media [30]
Tab.1  
Membrane Concentration of PVDF-HFP/wt-% Concentration of ATBC/wt-%
M-25 25 75
M-30 30 70
M-35 35 65
M-40 40 60
Tab.2  
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Membrane Polymer concentration/wt-% ΔHf/(J?g–1) Tm/°C Xc/%
M Powder 16.01 140.45 15.29
M-25 25 33.64 141.55 32.13
M-30 30 33.19 142.78 31.70
M-35 35 34.02 139.90 32.49
M-40 40 32.52 139.96 31.06
Tab.3  
Fig.5  
Membrane Polymer concentration/wt-% CAwater/(°) Ra/nm Rq/nm Rmax/nm
M-25 25 109.27 ± 0.87 161 ± 5.8 199 ± 10.5 1353 ± 55.1
M-30 30 119.87 ± 1.53 111 ± 4.1 144 ± 6.7 1217 ± 43.8
M-35 35 123.87 ± 1.60 101 ± 3.4 129 ± 5.1 964 ± 28.6
M-40 40 119.53 ± 1.01 99.1 ± 2.1 122 ± 3.2 751 ± 35.7
Tab.4  
Membrane Polymer concentration/wt-% Mean pore size/µm Porosity/% Thickness/µm
M-25 25 0.594 ± 0.057 69.27 ± 0.81 151.56 ± 13.27
M-30 30 0.406 ± 0.032 60.43 ± 0.75 186.89 ± 7.20
M-35 35 0.315 ± 0.083 57.87 ± 0.39 184.67 ± 6.66
M-40 40 0.188 ± 0.012 51.33 ± 0.26 228.33 ± 8.15
Tab.5  
Fig.6  
Fig.7  
Fig.8  
1 A A Puranik, L N Rodrigues, J Chau, L Li, K K Sirkar. Porous hydrophobic-hydrophilic composite membranes for direct contact membrane distillation. Journal of Membrane Science, 2019, 591: 117225
https://doi.org/10.1016/j.memsci.2019.117225
2 S Al-Obaidani, E Curcio, F Macedonio, G Di Profio, H Ai-Hinai, E Drioli. Potential of membrane distillation in seawater desalination: thermal efficiency, sensitivity study and cost estimation. Journal of Membrane Science, 2008, 323(1): 85–98
https://doi.org/10.1016/j.memsci.2008.06.006
3 A Alkhudhiri, N Darwish, N Hilal. Membrane distillation: a comprehensive review. Desalination, 2012, 287: 2–18
https://doi.org/10.1016/j.desal.2011.08.027
4 M M Teoh, T S Chung, Y S Yeo. Dual-layer PVDF/PTFE composite hollow fibers with a thin macrovoid-free selective layer for water production via membrane distillation. Chemical Engineering Journal, 2011, 171(2): 684–691
https://doi.org/10.1016/j.cej.2011.05.020
5 K Xu, Y C Cai, N T Hassankiadeh, Y M Cheng, X Li, X Z Wang, Z H Wang, E Drioli, Z L Cui. ECTFE membrane fabrication via TIPS method using ATBC diluent for vacuum membrane distillation. Desalination, 2019, 456: 13–22
https://doi.org/10.1016/j.desal.2019.01.004
6 M Mackey, L Flandin, A Hiltner, E Baer. Confined crystallization of PVDF and a PVDF-TFE copolymer in nanolayered films. Journal of Polymer Science. Part B, Polymer Physics, 2011, 49(24): 1750–1761
https://doi.org/10.1002/polb.22375
7 T T Men, X Liu, B H Jiang, X F Long, H Y Guo. Ferroelectric beta-crystalline phase formation and property enhancement in polydopamine modified BaTiO3/poly (vinylidene fluoride-trifluoroethylene) nanocomposite films. Thin Solid Films, 2019, 669: 579–587
https://doi.org/10.1016/j.tsf.2018.11.051
8 L B Zheng, Z J Wu, Y S Wei, Y Zhang, Y Yuan, J Wang. Preparation of PVDF-CTFE hydrophobic membranes for MD application: effect of LiCl-based mixed additives. Journal of Membrane Science, 2016, 506: 71–85
https://doi.org/10.1016/j.memsci.2016.01.044
9 S Hosseini, A Mansourizadeh. Preparation of porous hydrophobic poly(vinylidene fluoride-co-hexafluoropropylene) hollow fiber membrane contactors for CO2 stripping. Journal of the Taiwan Institute of Chemical Engineers, 2017, 76: 156–166
https://doi.org/10.1016/j.jtice.2017.04.014
10 M C Garcia-Payo, M Essalhi, M Khayet. Effects of PVDF-HFP concentration on membrane distillation performance and structural morphology of hollow fiber membranes. Journal of Membrane Science, 2010, 347(1–2): 209–219
https://doi.org/10.1016/j.memsci.2009.10.026
11 F Liu, N A Hashim, Y T Liu, M R M Abed, K Li. Progress in the production and modification of PVDF membranes. Journal of Membrane Science, 2011, 375(1–2): 1–27
https://doi.org/10.1016/j.memsci.2011.03.014
12 S Fadhil, T Marino, H F Makki, Q F Alsalhy, S Blefari, F Macedonio, E Di Nicolo, L Giorno, E Drioli, A Figoli. Novel PVDF-HFP flat sheet membranes prepared by triethyl phosphate (TEP) solvent for direct contact membrane distillation. Chemical Engineering and Processing, 2016, 102: 16–26
https://doi.org/10.1016/j.cep.2016.01.007
13 S Wongchitphimon, R Wang, R Jiraratananon, L Shi, C H Loh. Effect of polyethylene glycol (PEG) as an additive on the fabrication of polyvinylidene fluoride-co-hexafluropropylene (PVDF-HFP) asymmetric microporous hollow fiber membranes. Journal of Membrane Science, 2011, 369(1–2): 329–338
https://doi.org/10.1016/j.memsci.2010.12.008
14 L Shi, R Wang, Y M Cao, D T Liang, J H Tay. Effect of additives on the fabrication of poly (vinylidene fluoride-co-hexafluropropylene) (PVDF-HFP) asymmetric microporous hollow fiber membranes. Journal of Membrane Science, 2008, 315(1–2): 195–204
https://doi.org/10.1016/j.memsci.2008.02.035
15 C S Feng, R Wang, B L Shi, G M Li, Y L Wu. Factors affecting pore structure and performance of poly(vinylidene fluoride-co-hexafluoro propylene) asymmetric porous membrane. Journal of Membrane Science, 2006, 277(1–2): 55–64
https://doi.org/10.1016/j.memsci.2005.10.009
16 E Curcio, E Fontananova, G Di Profio, E Drioli. Influence of the structural properties of poly(vinylidene fluoride) membranes on the heterogeneous nucleation rate of protein crystals. Journal of Physical Chemistry B, 2006, 110(25): 12438–12445
https://doi.org/10.1021/jp061531y
17 A J Castro. Methods for making microporous products. US Patent, 4247498, 1981–01–27
18 M Liu, S H Liu, Z L Xu, Y M Wei, H Yang. Formation of microporous polymeric membranes via thermally induced phase separation: a review. Frontiers of Chemical Science and Engineering, 2016, 10(1): 57–75
https://doi.org/10.1007/s11705-016-1561-7
19 R E Sousa, J Nunes-Pereira, J C C Ferreira, C M Costa, A V Machado, M M Silva, S Lanceros-Mendez. Microstructural variations of poly(vinylidene fluoride co-hexafluoropropylene) and their influence on the thermal, dielectric and piezoelectric properties. Polymer Testing, 2014, 40: 245–255
https://doi.org/10.1016/j.polymertesting.2014.09.012
20 Z L Cui, Y M Cheng, K Xu, J Yue, Y Zhou, X G Li, Q Wang, S P Sun, Y Wang, X Z Wang, Z Wang. Wide liquid-liquid phase separation region enhancing tensile strength of poly(vinylidene fluoride) membranes via TIPS method with a new diluent. Polymer, 2018, 141: 46–53
https://doi.org/10.1016/j.polymer.2018.02.054
21 G L Ji, Y Y Xu, B K Zhu, L P Zhu. PVDF-HFP membrane prepared via TIPS process as the matrix of gel electrolyte for lithium ion battery. Journal of Macromolecular Science, Part B: Physics, 2011, 50(2): 275–290
https://doi.org/10.1080/00222341003651429
22 Z Y Cui, Y Y Xu, L P Zhu, J Y Wang, B K Zhu. Investigation on PVDF-HFP microporous membranes prepared by TIPS process and their application as polymer electrolytes for lithium ion batteries. Ionics, 2009, 15(4): 469–476
https://doi.org/10.1007/s11581-008-0253-9
23 X Y Wang, C F Xiao, H L Liu, Q L Huang, H Fu. Fabrication and properties of PVDF and PVDF-HFP microfiltration membranes. Journal of Applied Polymer Science, 2018, 135(40): 46711
https://doi.org/10.1002/app.46711
24 X Y Wang, C F Xiao, H L Liu, Q L Huang, J Q Hao, H Fu. Poly(vinylidene fluoride-hexafluoropropylene) porous membrane with controllable structure and applications in efficient oil/water separation. Materials (Basel), 2018, 11(3): 443
https://doi.org/10.3390/ma11030443
25 X Y Wang, C F Xiao, H L Liu, M X Chen, J Q Hao, Y J Wu. A study on fabrication of PVDF-HFP/PTFE blend membranes with controllable and bicontinuous structure for highly effective water-in-oil emulsion separation. RSC Advances, 2018, 8(49): 27754–27762
https://doi.org/10.1039/C8RA04547J
26 J Pan, C F Xiao, Q L Huang, H L Liu, J Hu. ECTFE porous membranes with conveniently controlled microstructures for vacuum membrane distillation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(46): 23549–23559
https://doi.org/10.1039/C5TA07629C
27 B Zhou, Q Li, Y H Tang, Y K Lin, X L Wang. Preparation of ECTFE membranes with bicontinuous structure via TIPS method by a binary diluent. Desalination and Water Treatment, 2016, 57(38): 17646–17657
https://doi.org/10.1080/19443994.2015.1086898
28 H Karkhanechi, S Rajabzadeh, E Di Nicolo, H Usuda, A R Shaikh, H Matsuyama. Preparation and characterization of ECTFE hollow fiber membranes via thermally induced phase separation (TIPS). Polymer, 2016, 97: 515–524
https://doi.org/10.1016/j.polymer.2016.05.067
29 Z L Cui, N T Hassankiadeh, S Y Lee, J M Lee, K T Woo, A Sanguineti, V Arcella, Y M Lee, E Drioli. Poly(vinylidene fluoride) membrane preparation with an environmental diluent via thermally induced phase separation. Journal of Membrane Science, 2013, 444: 223–236
https://doi.org/10.1016/j.memsci.2013.05.031
30 J Nunes Pereira, R Lima, G Choudhary, P R Sharma, S Ferdov, G Botelho, R K Sharma, S Lanceros Mendez. Highly efficient removal of fluoride from aqueous media through polymer composite membranes. Separation and Purification Technology, 2018, 205: 1–10
https://doi.org/10.1016/j.seppur.2018.05.015
31 Z L Cui, N T Hassankiadeh, S Y Lee, K T Woo, J M Lee, A Sanguineti, V Arcella, Y M Lee, E Drioli. Tailoring novel fibrillar morphologies in poly(vinylidene fluoride) membranes using a low toxic triethylene glycol diacetate (TEGDA) diluent. Journal of Membrane Science, 2015, 473: 128–136
https://doi.org/10.1016/j.memsci.2014.09.019
32 G Liu, J Pan, X L Xu, Z H Wang, Z L Cui. Preparation of ECTFE porous membrane with a green diluent TOTM and performance in VMD process. Journal of Membrane Science, 2020, 612: 118375
https://doi.org/10.1016/j.memsci.2020.118375
33 Y X Zhang, X Z Wang, Z L Cui, E Drioli, Z H Wang, S F Zhao. Enhancing wetting resistance of poly(vinylidene fluoride) membranes for vacuum membrane distillation. Desalination, 2017, 415: 58–66
https://doi.org/10.1016/j.desal.2017.04.011
34 A L Ahmad, U R Farooqui, N A Hamid. Porous (PVDF-HFP/PANI/GO) ternary hybrid polymer electrolyte membranes for lithium-ion batteries. RSC Advances, 2018, 8(45): 25725–25733
https://doi.org/10.1039/C8RA03918F
35 G L Ji, L P Zhu, B K Zhu, C F Zhang, Y Y Xu. Structure formation and characterization of PVDF hollow fiber membrane prepared via TIPS with diluent mixture. Journal of Membrane Science, 2008, 319(1–2): 264–270
https://doi.org/10.1016/j.memsci.2008.03.043
36 Z L Cui, N T Hassankiadeh, Y B Zhuang, E Drioli, Y M Lee. Crystalline polymorphism in poly(vinylidenefluoride) membranes. Progress in Polymer Science, 2015, 51: 94–126
https://doi.org/10.1016/j.progpolymsci.2015.07.007
37 D Kumar, M Suleman, S A Hashmi. Studies on poly(vinylidene fluoride-co-hexafluoropropylene) based gel electrolyte nanocomposite for sodium-sulfur batteries. Solid State Ionics, 2011, 202(1): 45–53
https://doi.org/10.1016/j.ssi.2011.09.001
38 V Aravindan, P Vickraman, T P Kumar. Polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP)-based composite polymer electrolyte containing LiPF3(CF3CF2)(3). Journal of Non-Crystalline Solids, 2008, 354(29): 3451–3457
https://doi.org/10.1016/j.jnoncrysol.2008.03.009
39 M Ulaganathan, R Nithya, S Rajendran, S Raghu. Li-ion conduction on nanofiller incorporated PVdF-co-HFP based composite polymer blend electrolytes for flexible battery applications. Solid State Ionics, 2012, 218: 7–12
https://doi.org/10.1016/j.ssi.2012.04.029
40 Z Y Cui, Y Y Xu, L P Zhu, H Y Deng, J Y Wang, B K Zhu. Preparation of PVDF-HFP microporous membranes via the thermally induced phase separation process. Journal of Macromolecular Science, Part B: Physics, 2009, 48(1): 41–54
https://doi.org/10.1080/00222340802561532
41 Y T Chua, G Z Ji, G Birkett, C X C Lin, F Kleitz, S Smart. Nanoporous organosilica membrane for water desalination: theoretical study on the water transport. Journal of Membrane Science, 2015, 482: 56–66
https://doi.org/10.1016/j.memsci.2015.01.060
42 L Eykens, K De Sitter, C Dotremont, L Pinoy, B Van der Bruggen. How to optimize the membrane properties for membrane distillation: a review. Industrial & Engineering Chemistry Research, 2016, 55(35): 9333–9343
https://doi.org/10.1021/acs.iecr.6b02226
43 M S El-Bourawi, Z Ding, R Ma, M Khayet. A framework for better understanding membrane distillation separation process. Journal of Membrane Science, 2006, 285(1–2): 4–29
https://doi.org/10.1016/j.memsci.2006.08.002
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed