Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2021, Vol. 15 Issue (6): 1572-1582   https://doi.org/10.1007/s11705-021-2112-4
  本期目录
Gold nanoparticles/single-stranded DNA-reduced graphene oxide nanocomposites based electrochemical biosensor for highly sensitive detection of cholesterol
Shuyao Wu1, Chengquan Sui1, Chong Wang1, Yulu Wang1, Dongqing He1, Ying Sun1, Yu Zhang1, Qingbo Meng1, Tianyi Ma2(), Xi-Ming Song1()
1. Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
2. Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn VIC 3122, Australia
 全文: PDF(1765 KB)   HTML
Abstract

High density and uniform distribution of the gold nanoparticles functionalized single-stranded DNA modified reduced graphene oxide nanocomposites were obtained by non-covalent interaction. The positive gold nanoparticles prepared by phase inversion method exhibited good dimensional homogeneity and dispersibility, which could readily combine with single-stranded DNA modified reduced graphene oxide nanocomposites by electrostatic interactions. The modification of single-stranded DNA endowed the reduced graphene oxide with favorable biocompatibility and provided the preferable surface with negative charge for further assembling of gold nanoparticles to obtain gold nanoparticles/single-stranded DNA modified reduced graphene oxide nanocomposites with better conductivity, larger specific surface area, biocompatibility and electrocatalytic characteristics. The as-prepared nanocomposites were applied as substrates for the construction of cholesterol oxidase modified electrode and well realized the direct electron transfer between the enzyme and electrode. The modified gold nanoparticles could further catalyze the products of cholesterol oxidation catalyzed by cholesterol oxidase, which was beneficial to the enzyme-catalyzed reaction. The as-fabricated bioelectrode exhibited excellent electrocatalytic performance for the cholesterol with a linear range of 7.5−280.5 μmol·L−1, a low detection limit of 2.1 μmol·L−1, good stability and reproducibility. Moreover, the electrochemical biosensor showed good selectivity and acceptable accuracy for the detection of cholesterol in human serum samples.

Key wordsreduced graphene oxide    gold nanoparticles    electrochemical biosensor    cholesterol oxidase    cholesterol
收稿日期: 2021-06-03      出版日期: 2021-11-09
Corresponding Author(s): Tianyi Ma,Xi-Ming Song   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2021, 15(6): 1572-1582.
Shuyao Wu, Chengquan Sui, Chong Wang, Yulu Wang, Dongqing He, Ying Sun, Yu Zhang, Qingbo Meng, Tianyi Ma, Xi-Ming Song. Gold nanoparticles/single-stranded DNA-reduced graphene oxide nanocomposites based electrochemical biosensor for highly sensitive detection of cholesterol. Front. Chem. Sci. Eng., 2021, 15(6): 1572-1582.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-021-2112-4
https://academic.hep.com.cn/fcse/CN/Y2021/V15/I6/1572
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Electrode Detection method Detection of limit
/(μmol?L?1)
Linear range
/(μmol?L?1)
R2 Sensitivity/(μA?μL?mol?1?cm?2) Stability Ref.
CoMnHCF/Nafion/ChOx a) CV 30 50?150
150?1000
0.99
0.97
385
80
? [43]
PPy-NO3?-Fe(CN)64?-AuNPs-COx-CE b) Amperometry ? 25?170 0.972 100 30 d (30%) [17]
ChOx-gRGO-PPy/GCE c) DPV 3.78 10?6000 0.99 1095.3 7 d (96%) [44]
GCE/PTH/ChOx/HRP d) DPV 6.3 25?125 0.99 180 30 d (90%) [45]
G/Ti(G)-3DNS/CS/ChOx bioelectrode e) CV 6.0 50?8000 0.99 3.82 5 d (>98%) [46]
ChOx/Pt/rGO/P3ABA/SPE f) Amperometry 40.5 250?4000 0.993 15.94 7 d (88%) [47]
PEI/(ChOx/PEI-rGO)3/GCE DPV 2.1 7.5?280.5 0.998 610 10 d (96%) Present work
Tab.1  
1 E Ikonen. Cellular cholesterol trafficking and compartmentalization. Nature Reviews. Molecular Cell Biology, 2008, 9(2): 125–138
https://doi.org/10.1038/nrm2336 pmid: 18216769
2 Y Huang, J Tan, L Cui, Z Zhou, S Zhou, Z Zhang, R Zheng, Y Xue, M Zhang, S Li, et al.Graphene and Au NPs co-mediated enzymatic silver deposition for the ultrasensitive electrochemical detection of cholesterol. Biosensors & Bioelectronics, 2018, 102: 560–567
https://doi.org/10.1016/j.bios.2017.11.037 pmid: 29220804
3 A N Sekretaryova, V Beni, M Eriksson, A A Karyakin, A P F Turner, M Y Vagin. Cholesterol self-powered biosensor. Analytical Chemistry, 2014, 86(19): 9540–9547
https://doi.org/10.1021/ac501699p pmid: 25164485
4 L Yang, H Zhao, Y Li, X Ran, G Deng, Y Zhang, H Ye, G Zhao, C P Li. Indicator displacement assay for cholesterol electrochemical sensing using a calix[6]arene functionalized graphene-modified electrode. Analyst (London), 2016, 141(1): 270–278
https://doi.org/10.1039/C5AN01843A pmid: 26626104
5 L Li, Y Wang, L Pan, Y Shi, W Cheng, Y Shi, G Yu. A nanostructured conductive hydrogels-based biosensor platform for human metabolite detection. Nano Letters, 2015, 15(2): 1146–1151
https://doi.org/10.1021/nl504217p pmid: 25569673
6 S Nantaphol, O Chailapakul, W Siangproh. Sensitive and selective electrochemical sensor using silver nanoparticles modified glassy carbon electrode for determination of cholesterol in bovine serum. Sensors and Actuators. B, Chemical, 2015, 207: 193–198
https://doi.org/10.1016/j.snb.2014.10.041
7 A Gorassini, G Verardo, S C Fregolent, R Bortolomeazzi. Rapid determination of cholesterol oxidation products in milk powder based products by reversed phase SPE and HPLC-APCI-MS/MS. Food Chemistry, 2017, 230: 604–610
https://doi.org/10.1016/j.foodchem.2017.03.080 pmid: 28407957
8 J Chitra, M Ghosh, H N Mishra. Rapid quantification of cholesterol in dairy powders using Fourier transform near infrared spectroscopy and chemometrics. Food Control, 2017, 78: 342–349
https://doi.org/10.1016/j.foodcont.2016.10.008
9 N M Galdino, G S Brehm, R Bussamara, W D G Gonçalves, G Abarca, J D Scholten. Sputtering deposition of gold nanoparticles onto graphene oxide functionalized with ionic liquids: biosensor materials for cholesterol detection. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2017, 5(48): 9482–9486
https://doi.org/10.1039/C7TB02582C pmid: 32264562
10 A Chen, S Chatterjee. Nanomaterials based electrochemical sensors for biomedical applications. Chemical Society Reviews, 2013, 42(12): 5425–5438
https://doi.org/10.1039/c3cs35518g pmid: 23508125
11 M M Abdi, R L Razalli, P M Tahir, N Chaibakhsh, M Hassani, M Mir. Optimized fabrication of newly cholesterol biosensor based on nanocellulose. International Journal of Biological Macromolecules, 2019, 126: 1213–1222
https://doi.org/10.1016/j.ijbiomac.2019.01.001 pmid: 30611809
12 S Rison, K B Akshaya, V S Bhat, G Shanker, A Varghese. MnO2 nanoclusters decorated on graphene modified pencil graphite electrode for non-nzymatic determination of cholesterol. Electroanalysis, 2020, 32(10): 1–10
https://doi.org/10.1002/elan.202000049
13 U Saxena, A B Das. Nanomaterials towards fabrication of cholesterol biosensors: key roles and design approaches. Biosensors & Bioelectronics, 2016, 75: 196–205
https://doi.org/10.1016/j.bios.2015.08.042 pmid: 26319162
14 J Gao, W Huang, Z Chen, C Yi, L Jiang. Simultaneous detection of glucose, uric acid and cholesterol using flexible microneedle electrode array-based biosensor and multi-channel portable electrochemical analyzer. Sensors and Actuators. B, Chemical, 2019, 287: 102–110
https://doi.org/10.1016/j.snb.2019.02.020
15 D Garcia Raya, C Silien, M Blazquez, T Pineda, R Madueno. Electrochemical and AFM study of the 2D-assembly of colloidal gold nanoparticles on dithiol sams tuned by ionic strength. Journal of Physical Chemistry C, 2014, 118(26): 14617–14628
https://doi.org/10.1021/jp502692q
16 B Y C Ng, W Xiao, N P West, E J H Wee, Y Wang, M Trau. Rapid, single-cell electrochemical detection of mycobacterium tuberculosis using colloidal gold nanoparticles. Analytical Chemistry, 2015, 87(20): 10613–10618
https://doi.org/10.1021/acs.analchem.5b03121 pmid: 26382883
17 M Z A Rahim, G Govender-Hondros, S B Adeloju. A single step electrochemical integration of gold nanoparticles, cholesterol oxidase, cholesterol esterase and mediator with polypyrrole films for fabrication of free and total cholesterol nanobiosensors. Talanta, 2018, 189: 418–428
https://doi.org/10.1016/j.talanta.2018.06.041 pmid: 30086941
18 Y Han, R Zhang, C Dong, F Cheng, Y Guo. Sensitive electrochemical sensor for nitrite ions based on rose-like AuNPs/MoS2/graphene composite. Biosensors & Bioelectronics, 2019, 142: 111529
https://doi.org/10.1016/j.bios.2019.111529 pmid: 31351418
19 S Kumar-Krishnan, M Guadalupe-Ferreira García, E Prokhorov, M Estevez-González, R Pérez, R Esparza, M Meyyappan. Synthesis of gold nanoparticles supported on functionalized nanosilica using deep eutectic solvent for an electrochemical enzymatic glucose biosensor. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2017, 5(34): 7072–7081
https://doi.org/10.1039/C7TB01346A pmid: 32263898
20 R Yuan, S R Cao, Y Q Chai, F X Gao, Q Zhao, M Y Tang, Z Q Tong, Y Xie. Direct electrochemistry and enzymatic activity of hemoglobin in positively charged colloid Au nanoparticles and hemoglobin layer-by-layer self-assembly films. Science China. Chemistry, 2007, 50(5): 620–628
https://doi.org/10.1007/s11426-007-0045-5
21 Z W Lu, Y F Li, T Liu, G T Wang, M M Sun, Y Y Jiang, H He, Y Y Wang, P Zou, X X Wang, et al.A dual-template imprinted polymer electrochemical sensor based on AuNPs and nitrogen-doped graphene oxide quantum dots coated on NiS2/biomass carbon for simultaneous determination of dopamine and chlorpromazine. Chemical Engineering Journal, 2020, 389: 124417–124426
https://doi.org/10.1016/j.cej.2020.124417
22 H Zhai, H Wang, S Wang, Z Chen, S Wang, Q Zhou, Y Pan. Electrochemical determination of mangiferin and icariin based on Au-AgNPs/MWNTs-SGSs modified glassy carbon electrode. Sensors and Actuators. B, Chemical, 2018, 255: 1771–1780
https://doi.org/10.1016/j.snb.2017.08.196
23 A K Geim, K S Novoselov. The rise of graphene. Nature Materials, 2007, 6(3): 183–191
https://doi.org/10.1038/nmat1849 pmid: 17330084
24 X Bo, M Zhou, L Guo. Electrochemical sensors and biosensors based on less aggregated graphene. Biosensors & Bioelectronics, 2017, 89(Pt 1): 167–186
https://doi.org/10.1016/j.bios.2016.05.002 pmid: 27161575
25 A Ambrosi, C K Chua, N M Latiff, A H Loo, C H A Wong, A Y S Eng, A Bonanni, M Pumera. Graphene and its electrochemistry- an update. Chemical Society Reviews, 2016, 45(9): 2458–2493
https://doi.org/10.1039/C6CS00136J pmid: 27052352
26 J Jiang, D Ding, J Wang, X Lin, G Diao. Three-dimensional nitrogen-doped graphene-based metal-free electrochemical sensors for simultaneous determination of ascorbic acid, dopamine, uric acid, and acetaminophen. Analyst (London), 2021, 146(3): 964–970
https://doi.org/10.1039/D0AN01912G pmid: 33284293
27 L Fritea, M Tertis, R Sandulescu, C Cristea. Chapter eleven. Enzyme-graphene platforms for electrochemical biosensor design with biomedical applications. In: Kumar C V, ed. Methods in Enzymology. Massachusetts: Academic Press, 2018, 293–333
28 S Wu, J Hao, S Yang, Y Sun, Y Wang, W Zhang, H Mao, X M Song. Layer-by-layer self-assembly film of PEI-reduced graphene oxide composites and cholesterol oxidase for ultrasensitive cholesterol biosensing. Sensors and Actuators. B, Chemical, 2019, 298: 126856–126864
https://doi.org/10.1016/j.snb.2019.126856
29 S Y Wu, Y X Wang, H Mao, C Wang, L X Xia, Y Zhang, H Ge, X M Song. Direct electrochemistry of cholesterol oxidase and biosensing of cholesterol based on PSS/polymeric ionic liquid-graphene nanocomposite. RSC Advances, 2016, 6(64): 59487–59496
https://doi.org/10.1039/C6RA06073K
30 A J Patil, J L Vickery, T B Scott, S Mann. Aqueous stabilization and self-assembly of graphene sheets into layered bio-nanocomposites using DNA. Advanced Materials, 2010, 21(31): 3159–3164
https://doi.org/10.1002/adma.200803633
31 Z Xu, X Lei, Y Tu, Z J Tan, B Song, H Fang. Dynamic cooperation of hydrogen binding and π stacking in ssdna adsorption on graphene oxide. Chemistry (Weinheim an der Bergstrasse, Germany), 2017, 23(53): 13100–13104
https://doi.org/10.1002/chem.201701733 pmid: 28714285
32 Q Zhang, Y Qiao, F Hao, L Zhang, S Wu, Y Li, J Li, X M Song. Fabrication of a biocompatible and conductive platform based on a single-stranded DNA/graphene nanocomposite for direct electrochemistry and electrocatalysis. Chemistry (Weinheim an der Bergstrasse, Germany), 2010, 16(27): 8133–8139
https://doi.org/10.1002/chem.201000684 pmid: 20583058
33 A Patil, J Vickery, T Scott, S Mann. Aqueous stabilization and self-assembly of graphene sheets into layered bio-nanocomposites using DNA. Advanced Materials, 2009, 21(31): 3159–3164
https://doi.org/10.1002/adma.200803633
34 W S Jr Hummers, R E Offeman. Preparation of graphitic oxide. Journal of the American Chemical Society, 1958, 80(6): 1339
https://doi.org/10.1021/ja01539a017
35 D I Gittins, F Caruso. Spontaneous phase transfer of nanoparticulate metals from organic to aqueous media. Angewandte Chemie International Edition, 2001, 40(16): 3001–3004
https://doi.org/10.1002/1521-3773(20010817)40:16<3001::AID-ANIE3001>3.0.CO;2-5 pmid: 12203629
36 S Dikmen, G Yilmaz, E Yörükoğullari, E Korkmaz. Zeta potential study of natural- and acid-activated sepiolites in electrolyte solutions. Canadian Journal of Chemical Engineering, 2012, 90(3): 785–792
https://doi.org/10.1002/cjce.20573
37 Q Zhang, S Wu, M He, L Zhang, Y Liu, J Li, X M Song. Preparation and bioelectrochemical application of gold nanoparticles-chitosan-graphene nanomaterials. Acta Chimica Sinica, 2012, 70(21): 2213–2219
https://doi.org/10.6023/A12060284
38 Y Zhang, X Li, D Li, Q Wei. A laccase based biosensor on AuNPs-MoS2 modified glassy carbon electrode for catechol detection. Colloids and Surfaces. B, Biointerfaces, 2020, 186: 110683–110690
https://doi.org/10.1016/j.colsurfb.2019.110683 pmid: 31816461
39 X R Li, J J Xu, H Y Chen. Potassium-doped carbon nanotubes toward the direct electrochemistry of cholesterol oxidase and its application in highly sensitive cholesterol biosensor. Electrochimica Acta, 2011, 56(25): 9378–9385
https://doi.org/10.1016/j.electacta.2011.08.020
40 L Zhu, L Xu, L Tan, H Tan, S Yang, S Yao. Direct electrochemistry of cholesterol oxidase immobilized on gold nanoparticles-decorated multiwalled carbon nanotubes and cholesterol sensing. Talanta, 2013, 106: 192–199
https://doi.org/10.1016/j.talanta.2012.12.036 pmid: 23598116
41 K Rashidi, M Mahmoudi, G Mohammadi, M M Zangeneh, S Korani, H C Goicoechea, H W Gu, A R Jalalvand. Simultaneous co-immobilization of three enzymes onto a modified glassy carbon electrode to fabricate a high-performance amperometric biosensor for determination of total cholesterol. International Journal of Biological Macromolecules, 2018, 120(Pt A): 587–595
https://doi.org/10.1016/j.ijbiomac.2018.08.163 pmid: 30170050
42 N Thakur, M Kumar, S Das Adhikary, D Mandal, T C Nagaiah. PVIM-Co5POM/MNC composite as a flexible electrode for the ultrasensitive and highly selective non-enzymatic electrochemical detection of cholesterol. Chemical Communications, 2019, 55(34): 5021–5024
https://doi.org/10.1039/C9CC01534E pmid: 30968895
43 M Antuch, Y Matos-Peralta, D Llanes, F Echevarría, J Rodríguez-Hernández, M H Marin, A M Díaz-García, L Reguera. Bimetallic Co2+ and Mn2+ hexacyanoferrate for hydrogen peroxide electrooxidation and its application in a highly sensitive cholesterol biosensor. ChemElectroChem, 2019, 6(5): 1567–1573
https://doi.org/10.1002/celc.201900190
44 K Pramanik, P Sarkar, D Bhattacharyay, P Majumdar. One step electrode fabrication for direct electron transfer cholesterol biosensor based on composite of polypyrrole, green reduced graphene oxide and cholesterol oxidase. Electroanalysis, 2018, 30(11): 2719–2730
https://doi.org/10.1002/elan.201800318
45 M M Rahman, X B Li, J Kim, B O Lim, A J S Ahammad, J J Lee. A cholesterol biosensor based on a bi-enzyme immobilized on conducting poly(thionine) film. Sensors and Actuators. B, Chemical, 2014, 202: 536–542
https://doi.org/10.1016/j.snb.2014.05.114
46 S Komathi, N Muthuchamy, K P Lee, A I Gopalan. Fabrication of a novel dual mode cholesterol biosensor using titanium dioxide nanowire bridged 3D graphene nanostacks. Biosensors & Bioelectronics, 2016, 84: 64–71
https://doi.org/10.1016/j.bios.2015.11.042 pmid: 26611566
47 S Phetsang, J Jakmunee, P Mungkornasawakul, R Laocharoensuk, K Ounnunkad. Sensitive amperometric biosensors for detection of glucose and cholesterol using a platinum/reduced graphene oxide/poly(3-aminobenzoic acid) film-modified screen-printed carbon electrode. Bioelectrochemistry (Amsterdam, Netherlands), 2019, 127: 125–135
https://doi.org/10.1016/j.bioelechem.2019.01.008 pmid: 30818262
48 D P Yang, W Guo, Z Cai, Y Chen, X He, C Huang, J Zhuang, N Jia. Highly sensitive electrochemiluminescence biosensor for cholesterol detection based on AgNPs-BSA-MnO2 nanosheets with superior biocompatibility and synergistic catalytic activity. Sensors and Actuators. B, Chemical, 2018, 260: 642–649
https://doi.org/10.1016/j.snb.2018.01.096
49 Q Wu, L He, Z W Jiang, Y Li, Z M Cao, C Z Huang, Y F Li. CuO nanoparticles derived from metal-organic gel with excellent electrocatalytic and peroxidase-mimicking activities for glucose and cholesterol detection. Biosensors & Bioelectronics, 2019, 145: 111704
https://doi.org/10.1016/j.bios.2019.111704 pmid: 31539649
[1] FCE-21046-OF-WS_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed