Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2022, Vol. 16 Issue (6): 939-949   https://doi.org/10.1007/s11705-022-2152-4
  本期目录
Hierarchical porous metal-organic frameworks/polymer microparticles for enhanced catalytic degradation of organic contaminants
Ping Zhang1, Yi-Han Li1, Li Chen2, Mao-Jie Zhang1(), Yang Ren1, Yan-Xu Chen1, Zhi Hu1, Qi Wang1, Wei Wang2(), Liang-Yin Chu2
1. College of Engineering, Sichuan Normal University, Chengdu 610101, China
2. School of Chemical Engineering, Sichuan University, Chengdu 610065, China
 全文: PDF(6559 KB)   HTML
Abstract

This work reports on a simple microfluidic strategy to controllably fabricate uniform polymeric microparticles containing hierarchical porous structures integrated with highly accessible catalytic metal organic frameworks for efficient degradation of organic contaminants. Monodisperse (W1/O)/W2 emulsion droplets generated from microfluidics are used as templates for the microparticle synthesis. The emulsion droplets contain tiny water microdroplets from homogenization and water nanodroplets from diffusion-induced swollen micelles as the dual pore-forming templates, and Fe-based metal-organic framework nanorods as the nanocatalysts. The obtained microparticles possess interconnected hierarchical porous structures decorated with highly accessible Fe-based metal-organic framework nanorods for enhanced degradation of organic contaminants via a heterogeneous Fenton-like reaction. Such a degradation performance is highlighted by using these microparticles for efficient degradation of rhodamine B in hydrogen peroxide solution. This work provides a simple and general strategy to flexibly combine hierarchical porous structures and catalytic metal-organic frameworks to engineer advanced microparticles for water decontamination.

Key wordsmetal-organic framework    polymer microparticle    nanocatalyst    decontamination    organic contaminant
收稿日期: 2021-11-06      出版日期: 2022-06-28
Corresponding Author(s): Mao-Jie Zhang,Wei Wang   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2022, 16(6): 939-949.
Ping Zhang, Yi-Han Li, Li Chen, Mao-Jie Zhang, Yang Ren, Yan-Xu Chen, Zhi Hu, Qi Wang, Wei Wang, Liang-Yin Chu. Hierarchical porous metal-organic frameworks/polymer microparticles for enhanced catalytic degradation of organic contaminants. Front. Chem. Sci. Eng., 2022, 16(6): 939-949.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-022-2152-4
https://academic.hep.com.cn/fcse/CN/Y2022/V16/I6/939
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
1 C C Wang, J R Li, X L Lv, Y Q Zhang, G Guo. Photocatalytic organic pollutants degradation in metal-organic frameworks. Energy & Environmental Science, 2014, 7( 9): 2831– 2867
https://doi.org/10.1039/C4EE01299B
2 F Xiao, H Ren, H Zhou, H Wang, N Wang, D Pan. Porous montmorillonite@graphene oxide@Au nanoparticle composite microspheres for organic dye degradation. ACS Applied Nano Materials, 2019, 2( 9): 5420– 5429
https://doi.org/10.1021/acsanm.9b01043
3 Y Liu, C Wang, J P Veder, M Saunders, M Tade, S Wang, Z Shao. Hierarchically porous cobalt-carbon nanosphere-in-microsphere composites with tunable properties for catalytic pollutant degradation and electrochemical energy storage. Journal of Colloid and Interface Science, 2018, 530 : 556– 566
https://doi.org/10.1016/j.jcis.2018.07.010
4 J Li, L Zhou, Y Song, X Yu, X Li, Y Liu, Z Zhang, Y Yuan, S Yan, J Zhang. Green fabrication of porous microspheres containing cellulose nanocrystal/MnO2 nanohybrid for efficient dye removal. Carbohydrate Polymers, 2021, 270 : 118340
https://doi.org/10.1016/j.carbpol.2021.118340
5 L Zeng, X Guo, C He, C Duan. Metal-organic frameworks: versatile materials for heterogeneous photocatalysis. ACS Catalysis, 2016, 6( 11): 7935– 7947
https://doi.org/10.1021/acscatal.6b02228
6 L Jiao, Y Wang, H L Jiang, Q Xu. Metal-organic frameworks as platforms for catalytic applications. Advanced Materials, 2018, 30( 37): e1703663
https://doi.org/10.1002/adma.201703663
7 Y B Huang, J Liang, X S Wang, R Cao. Multifunctional metal-organic framework catalysts: synergistic catalysis and tandem reactions. Chemical Society Reviews, 2017, 46( 1): 126– 157
https://doi.org/10.1039/C6CS00250A
8 L Y Chen, N Tsumori, Q Xu. Quasi-MOF-immobilized metal nanoparticles for synergistic catalysis. Science China Chemistry, 2020, 63( 11): 1601– 1607
https://doi.org/10.1007/s11426-020-9781-7
9 C Zhang, L Ai, J Jiang. Solvothermal synthesis of MIL-53(Fe) hybrid magnetic composites for photoelectrochemical water oxidation and organic pollutant photodegradation under visible light. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3( 6): 1– 8
https://doi.org/10.1039/C4TA04622F
10 H Zhao, Y Chen, Q Peng, Q Wang, G Zhao. Catalytic activity of MOF(2Fe/Co)/carbon aerogel for improving H2O2 and OH generation in solar photo-electro-Fenton process. Applied Catalysis B: Environmental, 2017, 203 : 127– 137
https://doi.org/10.1016/j.apcatb.2016.09.074
11 S Tanaka, R Miyashita. Aqueous-system-enabled spray-drying technique for the synthesis of hollow polycrystalline ZIF-8 MOF particles. ACS Omega, 2017, 2( 10): 6437– 6445
https://doi.org/10.1021/acsomega.7b01325
12 L Chen, M J Zhang, S Y Zhang, L Shi, Y M Yang, Z Liu, X J Ju, R Xie, W Wang, L Y Chu. Simple and continuous fabrication of self-propelled micromotors with photocatalytic metal-organic frameworks for enhanced synergistic environmental remediation. ACS Applied Materials & Interfaces, 2020, 12( 31): 35120– 35131
https://doi.org/10.1021/acsami.0c11283
13 S Mosleh, M R Rahimi. Intensification of abamectin pesticide degradation using the combination of ultrasonic cavitation and visible-light driven photocatalytic process: synergistic effect and optimization study. Ultrasonics Sonochemistry, 2017, 35 : 449– 457
https://doi.org/10.1016/j.ultsonch.2016.10.025
14 Y Xue, P Wang, C Wang, Y Ao. Efficient degradation of atrazine by BiOBr/UiO-66 composite photocatalyst under visible light irradiation: environmental factors, mechanisms and degradation pathways. Chemosphere, 2018, 203 : 497– 505
https://doi.org/10.1016/j.chemosphere.2018.04.017
15 G P Li, K Zhang, C B Li, R C Gao, Y Cheng, L Hou, Y Y Wang. Solvent-free method to encapsulate polyoxometalate into metal-organic frameworks as efficient and recyclable photocatalyst for harmful sulfamethazine degrading in water. Applied Catalysis B: Environmental, 2019, 245 : 753– 759
https://doi.org/10.1016/j.apcatb.2019.01.012
16 L Shi, T Wang, H Zhang, K Chang, X Meng, H Liu, J Ye. An amine-functionalized iron(III) metal-organic framework as efficient visible-light photocatalyst for Cr(VI) reduction. Advancement of Science, 2015, 2( 3): 1500006
https://doi.org/10.1002/advs.201500006
17 X Wang, J Liu, S Leong, X Lin, J Wei, B Kong, Y Xu, Z X Low, J Yao, H Wang. Rapid construction of ZnO@ZIF-8 heterostructures with size-selective photocatalysis properties. ACS Applied Materials & Interfaces, 2016, 8( 14): 9080– 9087
https://doi.org/10.1021/acsami.6b00028
18 L Huang, M He, B Chen, B Hu. Magnetic Zr-MOFs nanocomposites for rapid removal of heavy metal ions and dyes from water. Chemosphere, 2018, 199 : 435– 444
https://doi.org/10.1016/j.chemosphere.2018.02.019
19 M J Zhang, W Wang, X L Yang, B Ma, Y M Liu, R Xie, X J Ju, Z Liu, L Y Chu. Uniform microparticles with controllable highly interconnected hierarchical porous structures. ACS Applied Materials & Interfaces, 2015, 7( 25): 13758– 13767
https://doi.org/10.1021/acsami.5b01031
20 Y Y Su, M J Zhang, W Wang, C F Deng, J Peng, Z Liu, Y Faraj, X J Ju, R Xie, L Y Chu. Bubble-propelled hierarchical porous micromotors from evolved double emulsions. Industrial & Engineering Chemistry Research, 2019, 58( 4): 1590– 1600
https://doi.org/10.1021/acs.iecr.8b05791
21 T Ataei-Germi, A Nematollahzadeh. Bimodal porous silica microspheres decorated with polydopamine nano-particles for the adsorption of methylene blue in fixed-bed columns. Journal of Colloid and Interface Science, 2016, 470 : 172– 182
https://doi.org/10.1016/j.jcis.2016.02.057
22 M J Zhang, T Chen, P Zhang, Z L Li, L Chen, Y Y Su, L D Qiu, G Peng, W Wang, L Y Chu. Magnetic hierarchical porous SiO2 microparticles from droplet microfluidics for water decontamination. Soft Matter, 2020, 16( 10): 2581– 2593
https://doi.org/10.1039/C9SM02391G
23 C Yu, W Zhu, Z He, J Xu, F Fang, Z Gao, W Ding, Y Wang, J Wang, J Wang, A Huang, A Cheng, Y Wei, S Ai. ATP-triggered drug release system based on ZIF-90 loaded porous poly(lactic-co-glycolic acid) microspheres. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 615 : 126255
https://doi.org/10.1016/j.colsurfa.2021.126255
24 D Yu, L Li, M Wu, J C Crittenden. Enhanced photocatalytic ozonation of organic pollutants using an iron-based metal-organic framework. Applied Catalysis B: Environmental, 2019, 251 : 66– 75
https://doi.org/10.1016/j.apcatb.2019.03.050
25 Y Zhang, J Zhou, X Chen, L Wang, W Cai. Coupling of heterogeneous advanced oxidation processes and photocatalysis in efficient degradation of tetracycline hydrochloride by Fe-based MOFs: synergistic effect and degradation pathway. Chemical Engineering Journal, 2019, 369 : 745– 757
https://doi.org/10.1016/j.cej.2019.03.108
26 A Xie, J Cui, J Yang, Y Chen, J Lang, C Li, Y Yan, J Dai. Graphene oxide/Fe(III)-based metal-organic framework membrane for enhanced water purification based on synergistic separation and photo-Fenton processes. Applied Catalysis B: Environmental, 2020, 264 : 118548
https://doi.org/10.1016/j.apcatb.2019.118548
27 W T Xu, L Ma, F Ke, F M Peng, G S Xu, Y H Shen, J F Zhu, L G Qiu, Y P Yuan. Metal-organic frameworks MIL-88A hexagonal microrods as a new photocatalyst for efficient decolorization of methylene blue dye. Dalton Transactions, 2014, 43( 9): 3792– 3798
https://doi.org/10.1039/C3DT52574K
28 Y Liu, Y Huang, A Xiao, H Qiu, L Liu. Preparation of magnetic Fe(3)O(4)/MIL-88A nanocomposite and its adsorption properties for bromophenol blue dye in aqueous solution. Nanomaterials, 2019, 9( 1): 51
https://doi.org/10.3390/nano9010051
29 X Liao, F Wang, F Wang, Y Cai, Y Yao, B T Teng, Q Hao, S Lu. Synthesis of (100) surface oriented MIL-88A-Fe with rod-like structure and its enhanced Fenton-like performance for phenol removal. Applied Catalysis B: Environmental, 2019, 259 : 118064
https://doi.org/10.1016/j.apcatb.2019.118064
30 N Liu, W Huang, X Zhang, L Tang, L Wang, Y Wang, M Wu. Ultrathin graphene oxide encapsulated in uniform MIL-88A(Fe) for enhanced visible light-driven photodegradation of RhB. Applied Catalysis B: Environmental, 2018, 221 : 119– 128
https://doi.org/10.1016/j.apcatb.2017.09.020
31 L Y Chu, A S Utada, R K Shah, J W Kim, D A Weitz. Controllable monodisperse multiple emulsions. Angewandte Chemie International Edition, 2007, 46( 47): 8970– 8974
https://doi.org/10.1002/anie.200701358
32 W Wang, M J Zhang, R Xie, X J Ju, C Yang, C L Mou, D A Weitz, L Y Chu. Hole-shell microparticles from controllably evolved double emulsions. Angewandte Chemie International Edition, 2013, 52( 31): 8084– 8087
https://doi.org/10.1002/anie.201301590
33 W Li, L Y Zhang, X H Ge, B Y Xu, W X Zhang, L L Qu, C H Choi, J H Xu, A Zhang, H M Lee, D A Weitz. Microfluidic fabrication of microparticles for biomedical applications. Chemical Society Reviews, 2018, 47( 15): 5646– 5683
https://doi.org/10.1039/C7CS00263G
34 W Wang, R Xie, X J Ju, T Luo, L Liu, D A Weitz, L Y Chu. Controllable microfluidic production of multicomponent multiple emulsions. Lab on a Chip, 2011, 11( 9): 1587– 1592
https://doi.org/10.1039/c1lc20065h
35 W Y Liu, W Wang, X J Ju, Z Liu, R Xie, L Y Chu. Functional microparticles from multiscale regulation of multiphase emulsions for mass-transfer intensification. Chemical Engineering Science, 2021, 231 : 116242
https://doi.org/10.1016/j.ces.2020.116242
36 W Wang, M J Zhang, L Y Chu. Functional polymeric microparticles engineered from controllable microfluidic emulsions. Accounts of Chemical Research, 2014, 47( 2): 373– 384
https://doi.org/10.1021/ar4001263
37 B J Wang, P Prinsen, H Z Wang, Z S Bai, H L Wang, R Luque, J Xuan. Macroporous materials: microfluidic fabrication, functionalization and applications. Chemical Society Reviews, 2017, 46( 3): 855– 914
https://doi.org/10.1039/C5CS00065C
38 Y Gao, S Li, Y Li, L Yao, H Zhang. Accelerated photocatalytic degradation of organic pollutant over metal-organic framework MIL-53(Fe) under visible LED light mediated by persulfate. Applied Catalysis B: Environmental, 2017, 202 : 165– 174
https://doi.org/10.1016/j.apcatb.2016.09.005
39 J Tang, J Wang. Metal organic framework with coordinatively unsaturated sites as efficient Fenton-like catalyst for enhanced degradation of sulfamethazine. Environmental Science & Technology, 2018, 52( 9): 5367– 5377
https://doi.org/10.1021/acs.est.8b00092
40 R Yuan, J Qiu, C Yue, C Shen, D Li, C Zhu, F Liu, A Li. Self-assembled hierarchical and bifunctional MIL-88A(Fe)@ZnIn2S4 heterostructure as a reusable sunlight-driven photocatalyst for highly efficient water purification. Chemical Engineering Journal, 2020, 401 : 126020
https://doi.org/10.1016/j.cej.2020.126020
41 X Hu, R Li, S Zhao, Y Xing. Microwave-assisted preparation of flower-like cobalt phosphate and its application as a new heterogeneous Fenton-like catalyst. Applied Surface Science, 2017, 396 : 1393– 1402
https://doi.org/10.1016/j.apsusc.2016.11.172
42 Z Lian, C Wei, B Gao, X Yang, Y Chan, J Wang, G Z Chen, K S Koh, Y Shi, Y Yan, Y Ren, J He, F Liu. Synergetic treatment of dye contaminated wastewater using microparticles functionalized with carbon nanotubes/titanium dioxide nanocomposites. RSC Advances, 2020, 10( 16): 9210– 9225
https://doi.org/10.1039/C9RA10899H
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed