Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2022, Vol. 16 Issue (9): 1367-1376   https://doi.org/10.1007/s11705-022-2153-3
  本期目录
Metal phosphonate-derived cobalt/nickel phosphide@N-doped carbon hybrids as efficient bifunctional oxygen electrodes for Zn−air batteries
Cai-Yue Wang, Meng-Qi Gao, Cheng-Cai Zhao, Li-Min Zhao, Hui Zhao()
School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
 全文: PDF(3110 KB)   HTML
Abstract

The exploration of efficient bifunctional electrocatalysts for oxygen reduction reaction and oxygen evolution reaction is pivotal for the development of rechargeable metal–air batteries. Transition metal phosphides are emerging as promising catalyst candidates because of their superb activity and low cost. Herein, a novel metal phosphonate-derived cobalt/nickel phosphide@N-doped carbon hybrid was developed by a carbothermal reduction of cobalt/nickel phosphonate hybrids with different Co/Ni molar ratios. The metal phosphonate derivation method achieved an intimately coupled interaction between metal phosphides and a heteroatom-doped carbon substrate. The resultant Co2P/Ni3P@NC-0.2 enables an impressive electrocatalytic oxygen reduction reaction activity, comparable with those of state-of-the-art Pt/C catalysts in terms of onset potential (0.88 V), 4e selectivity, methanol tolerance, and long-term durability. Moreover, remarkable oxygen evolution reaction activity was also observed in alkaline conditions. The high activity is ascribed to the N-doping, abundant accessible catalytic active sites, and the synergistic effect among the components. This work not only describes a high-efficiency electrocatalyst for both oxygen reduction reaction and oxygen evolution reaction, but also highlights the application of metal phosphonate hybrids in fabricating metal phosphides with tunable structures, which is of great significance in the energy conversion field.

Key wordsmetal phosphonate    cobalt/nickel phosphide    N-doped carbon    oxygen electrochemistry    Zn−air battery
收稿日期: 2021-11-11      出版日期: 2022-09-20
Corresponding Author(s): Hui Zhao   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2022, 16(9): 1367-1376.
Cai-Yue Wang, Meng-Qi Gao, Cheng-Cai Zhao, Li-Min Zhao, Hui Zhao. Metal phosphonate-derived cobalt/nickel phosphide@N-doped carbon hybrids as efficient bifunctional oxygen electrodes for Zn−air batteries. Front. Chem. Sci. Eng., 2022, 16(9): 1367-1376.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-022-2153-3
https://academic.hep.com.cn/fcse/CN/Y2022/V16/I9/1367
  
Fig.1  
Fig.2  
Fig.3  
Fig.4  
1 R Q Zhang, A Ma, X Liang, L M Zhao, H Zhao, Z Y Yuan. Cobalt nanoparticle decorated N-doped carbons derived from a cobalt covalent organic framework for oxygen electrochemistry. Frontiers of Chemical Science and Engineering, 2021, 15( 6): 1550– 1560
https://doi.org/10.1007/s11705-021-2104-4
2 F M Wang, H M Zhao, Y R Ma, Y Yang, B Li, Y Y Cui, Z Y Guo, L Wang. Core-shell-structured Co@Co4N nanoparticles encapsulated into MnO-modified porous N-doping carbon nanocubes as bifunctional catalysts for rechargeable Zn−air batteries. Journal of Energy Chemistry, 2020, 50 : 52– 62
https://doi.org/10.1016/j.jechem.2020.03.006
3 C X Zhao, J N Liu, J Wang, D Ren, B Q Li, Q Zhang. Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts. Chemical Society Reviews, 2021, 50( 13): 7745– 7778
https://doi.org/10.1039/D1CS00135C
4 J T Zhang, Z H Zhao, Z H Xia, L M Dai. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nature Nanotechnology, 2015, 10( 5): 444– 452
https://doi.org/10.1038/nnano.2015.48
5 R G Cao, J S Lee, M L Liu, J Cho. Recent progress in non-precious catalysts for metal−air batteries. Advanced Energy Materials, 2012, 2( 7): 816– 829
https://doi.org/10.1002/aenm.201200013
6 Y Y Guo, P F Yuan, J N Zhang, H C Xia, F Y Cheng, M F Zhou, J Li, Y Y Qiao, S C Mu, Q Xu. Co2P-CoN double active centers confined in N-doped carbon nanotube: heterostructural engineering for trifunctional catalysis toward HER, ORR, OER, and Zn−air batteries driven water splitting. Advanced Functional Materials, 2018, 28( 51): 1805641
https://doi.org/10.1002/adfm.201805641
7 H T Wang, W Wang, Y Y Xu, M Asif, H F Liu, B Y Xia. Ball-milling synthesis of Co2P nanoparticles encapsulated in nitrogen doped hollow carbon rods as efficient electrocatalysts. Journal of Materials Chemistry A, 2017, 5( 33): 17563– 17569
https://doi.org/10.1039/C7TA05510B
8 H Zhao, Z Y Yuan. Transition metal-phosphorus-based materials for electrocatalytic energy conversion reactions. Catalysis Science & Technology, 2017, 7( 2): 330– 357
https://doi.org/10.1039/C6CY01719C
9 K J Gagnon, H P Perry, A Clearfield. Conventional and unconventional metal-organic frameworks based on phosphonate ligands: MOFs and UMOFs. Chemical Reviews, 2012, 112( 2): 1034– 1054
https://doi.org/10.1021/cr2002257
10 H Zhao, Z Y Yuan. Design strategies of transition-metal phosphate and phosphonate electrocatalysts for energy-related reactions. ChemSusChem, 2021, 14( 1): 130– 149
https://doi.org/10.1002/cssc.202002103
11 X W Lv, C C Weng, Y P Zhu, Z Y Yuan. Nanoporous metal phosphonate hybrid materials as a novel platform for emerging applications: a critical review. Small, 2021, 17( 22): 2005304
https://doi.org/10.1002/smll.202005304
12 H Zhao, C C Weng, J T Ren, L Ge, Y P Liu, Z Y Yuan. Phosphonate-derived nitrogen-doped cobalt phosphate/carbon nanotube hybrids as highly active oxygen reduction reaction electrocatalysts. Chinese Journal of Catalysis, 2020, 41( 2): 259– 267
https://doi.org/10.1016/S1872-2067(19)63455-8
13 L Chen, J T Ren, Y S Wang, W W Tian, L J Gao, Z Y Yuan. Organic−inorganic cobalt-phosphonate-derived hollow cobalt phosphate spherical hybrids for highly efficient oxygen evolution. ACS Sustainable Chemistry & Engineering, 2019, 7( 15): 13559– 13568
https://doi.org/10.1021/acssuschemeng.9b03217
14 T H Zhou, Y H Du, D P Wang, S M Yin, W G Tu, Z Chen, A Borgna, R Xu. Phosphonate-based metal-organic framework derived Co−P−C hybrid as an efficient electrocatalyst for oxygen evolution reaction. ACS Catalysis, 2017, 7( 9): 6000– 6007
https://doi.org/10.1021/acscatal.7b00937
15 J Q Jiao, Y Pan, B Wang, W J Yang, S J Liu, C Zhang. Melamine-assisted pyrolytic synthesis of bifunctional cobalt-based core–shell electrocatalysts for rechargeable zinc−air batteries. Journal of Energy Chemistry, 2021, 53 : 364– 371
https://doi.org/10.1016/j.jechem.2020.05.032
16 J T Ren, Y S Wang, L Chen, L J Gao, W W Tian, Z Y Yuan. Binary FeNi phosphides dispersed on N,P-doped carbon nanosheets for highly efficient overall water splitting and rechargeable Zn−air batteries. Chemical Engineering Journal, 2020, 389 : 124408
https://doi.org/10.1016/j.cej.2020.124408
17 X W Lv, Z P Hu, L Chen, J T Ren, Y P Liu, Z Y Yuan. Organic−inorganic metal phosphonate-derived nitrogen-doped core−shell Ni2P nanoparticles supported on Ni foam for efficient hydrogen evolution reaction at all pH values. ACS Sustainable Chemistry & Engineering, 2019, 7( 15): 12770– 12778
https://doi.org/10.1021/acssuschemeng.9b01355
18 X W Lv, W S Xu, W W Tian, H Y Wang, Z Y Yuan. Activity promotion of core and shell in multifunctional core−shell Co2P@NC electrocatalyst by secondary metal doping for water electrolysis and Zn−air batteries. Small, 2021, 17( 38): 2101856
https://doi.org/10.1002/smll.202101856
19 D Li, H Baydoun, C N Verani, S L Brock. Efficient water oxidation using CoMnP nanoparticles. Journal of the American Chemical Society, 2016, 138( 12): 4006– 4009
https://doi.org/10.1021/jacs.6b01543
20 A Mendoza-Garcia, H Y Zhu, Y S Yu, Q Li, L Zhou, D Su, M J Kramer, S H Sun. Controlled anisotropic growth of Co−Fe−P from Co−Fe−O nanoparticles. Angewandte Chemie International Edition, 2015, 54( 33): 9642– 9645
https://doi.org/10.1002/anie.201503386
21 X Liang, B Zheng, L Chen, J Zhang, Z Zhuang, B Chen. MOF-derived formation of Ni2P−CoP bimetallic phosphides with strong interfacial effect toward electrocatalytic water splitting. ACS Applied Materials & Interfaces, 2017, 9( 27): 23222– 23229
https://doi.org/10.1021/acsami.7b06152
22 X W Lv, W W Tian, Y P Liu, Z Y Yuan. Well-defined CoP/Ni2P nanohybrids encapsulated in a nitrogen-doped carbon matrix as advanced multifunctional electrocatalysts for efficient overall water splitting and zinc−air batteries. Materials Chemistry Frontiers, 2019, 3( 11): 2428– 2436
https://doi.org/10.1039/C9QM00449A
23 H Zhao, C C Weng, Z P Hu, L Ge, Z Y Yuan. CdS-polydopamine-derived N,S-codoped hierarchically porous carbons as highly active electrocatalyst for oxygen reduction. ACS Sustainable Chemistry & Engineering, 2017, 5( 11): 9914– 9922
https://doi.org/10.1021/acssuschemeng.7b01875
24 J Tang, J Liu, C L Li, Y Q Li, M O Tade, S Dai, Y Yamauchi. Synthesis of nitrogen-doped mesoporous carbon spheres with extra-large pores through assembly of diblock copolymer micelles. Angewandte Chemie International Edition, 2015, 54( 2): 588– 593
https://doi.org/10.1002/ange.201407629
25 K N Kudin, B Ozbas, H C Schniepp, R K Prud’homme, I A Aksay, R Car. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Letters, 2008, 8( 1): 36– 41
https://doi.org/10.1021/nl071822y
26 X W Lv, Y P Liu, W W Tian, L J Gao, Z Y Yuan. Aluminum and phosphorus codoped “superaerophobic” Co3O4 microspheres for highly efficient electrochemical water splitting and Zn−air batteries. Journal of Energy Chemistry, 2020, 50 : 324– 331
https://doi.org/10.1016/j.jechem.2020.02.055
27 X S Wang, A Vasiliff, Y Jiao, Y Zheng, S Z Qiao. Electronic and structural engineering of carbon-based metal-free electrocatalysts for water splitting. Advanced Materials, 2019, 31( 13): 1803625
https://doi.org/10.1002/adma.201803625
28 L Hu, Y W Hu, R Liu, Y C Mao, M S Balogun, Y X Tong. Co-based MOF-derived Co/CoN/Co2P ternary composite embedded in N- and P-doped carbon as bifunctional nanocatalysts for efficient overall water splitting. International Journal of Hydrogen Energy, 2019, 44( 23): 11402– 11410
https://doi.org/10.1016/j.ijhydene.2019.03.157
29 K Xu, Y Q Sun, Y M Sun, Y Q Zhang, G C Jia, Q H Zhang, L Gu, S Z Li, Y Li, H J Fan. Yin−Yang harmony: metal and nonmetal dual-doping boosts electrocatalytic activity for alkaline hydrogen evolution. ACS Energy Letters, 2018, 3( 11): 2750– 2756
https://doi.org/10.1021/acsenergylett.8b01893
30 B You, N Jiang, M Sheng, M W Bhushan, Y Sun. Hierarchically porous urchin-like Ni2P superstructures supported on nickel foam as efficient bifunctional electrocatalysts for overall water splitting. ACS Catalysis, 2016, 6( 2): 714– 721
https://doi.org/10.1021/acscatal.5b02193
31 M Borghei, N Laocharoen, E Kibena-Põldsepp, L S Johansson, J Campbell, E Kauppinen, K Tammeveski, O J Rojas, N Porous. P-doped carbon from coconut shells with high electrocatalytic activity for oxygen reduction: alternative to Pt−C for alkaline fuel cells. Applied Catalysis B: Environmental, 2017, 204 : 394– 402
https://doi.org/10.1016/j.apcatb.2016.11.029
32 S Huang, Y Meng, Y Cao, S He, X Li, S Tong, M Wu. N-, O- and P-doped hollow carbons: metal-free bifunctional electrocatalysts for hydrogen evolution and oxygen reduction reactions. Applied Catalysis B: Environmental, 2019, 248 : 239– 248
https://doi.org/10.1016/j.apcatb.2019.01.080
33 M H Zhuang, X W Ou, Y B Dou, L L Zhang, Q C Zhang, R Z Wu, Y Ding, M H Shao, Z T Luo. Polymer-embedded fabrication of Co2P nanoparticles encapsulated in N,P-doped graphene for hydrogen generation. Nano Letters, 2016, 16( 7): 4691– 4698
https://doi.org/10.1021/acs.nanolett.6b02203
34 D Das, K K Nanda. One-step, integrated fabrication of Co2P nanoparticles encapsulated N, P dual-doped CNTs for highly advanced total water splitting. Nano Energy, 2016, 30 : 303– 311
https://doi.org/10.1016/j.nanoen.2016.10.024
35 Q Qin, H Jang, P Li, B Yuan, X Liu, J Cho. A tannic acid-derived N-, P-codoped carbon-supported iron-based nanocomposite as an advanced trifunctional electrocatalyst for the overall water splitting cells and zinc−air batteries. Advanced Energy Materials, 2019, 9( 5): 1803312
https://doi.org/10.1002/aenm.201803312
36 M Zhang, Q Dai, H Zheng, M Chen, L Dai. Novel MOF-derived Co@N−C bifunctional catalysts for highly efficient Zn–air batteries and water splitting. Advanced Materials, 2018, 30( 10): 1705431
https://doi.org/10.1002/adma.201705431
37 H Zhao, Z Y Yuan. Surface/interface engineering of high-efficiency noble metal-free electrocatalysts for energy-related electrochemical reactions. Journal of Energy Chemistry, 2021, 54 : 89– 104
https://doi.org/10.1016/j.jechem.2020.05.048
38 C X Zhao, J N Liu, B Q Li, D Ren, X Chen, J Yu, Q Zhang. Multiscale construction of bifunctional electrocatalysts for long-lifespan rechargeable zinc–air batteries. Advanced Functional Materials, 2020, 30( 36): 2003619
https://doi.org/10.1002/adfm.202003619
39 J T Ren, Z Y Yuan. A universal route to N-coordinated metals anchored on porous carbon nanosheets for highly efficient oxygen electrochemistry. Journal of Materials Chemistry A, 2019, 7( 22): 13591– 13601
https://doi.org/10.1039/C9TA03300A
40 Y M Shi, B Zhang. Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chemical Society Reviews, 2016, 45( 6): 1529– 1541
https://doi.org/10.1039/C5CS00434A
41 H Li, Q Li, P Wen, T B Williams, S Adhikari, C C Dun, C Lu, D Itanze, L Jiang, D L Carroll, G L Donati, P M Lundin, Y Qiu, S M Geyer. Colloidal cobalt phosphide nanocrystals as trifunctional electrocatalysts for overall water splitting powered by a zinc-air battery. Advanced Materials, 2018, 30( 9): 1705796
https://doi.org/10.1002/adma.201705796
42 P He, X Y Yu, X W Lou. Carbon-incorporated nickel−cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution. Angewandte Chemie International Edition, 2017, 56( 14): 3897– 3900
https://doi.org/10.1002/anie.201612635
43 L T Yan, L Cao, P C Dai, X Gu, D D Liu, L J Li, Y Wang, X B Zhao. Metal-organic frameworks derived nanotube of nickel−cobalt bimetal phosphides as highly efficient electrocatalysts for overall water splitting. Advanced Functional Materials, 2017, 27( 40): 1703455
https://doi.org/10.1002/adfm.201703455
[1] FCE-21087-OF-WC_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed