Spin polarization strategy to deploy proton resource over atomic-level metal sites for highly selective CO2 electrolysis
Yingjie Zhao1, Xinyue Wang1, Xiahan Sang3, Sixing Zheng1, Bin Yang1,2, Lecheng Lei1,2, Yang Hou1,2, Zhongjian Li1,2()
1. Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China 2. Institute of Zhejiang University-Quzhou, Quzhou 324000, China 3. Nanostructure Research Centre, Wuhan University of Technology, Wuhan 430070, China
Unlocking of the extremely inert C=O bond during electrochemical CO2 reduction demands subtle regulation on a key “resource”, protons, necessary for intermediate conversion but also readily trapped in water splitting, which is still challenging for developing efficient single-atom catalysts limited by their structural simplicity usually incompetent to handle this task. Incorporation of extra functional units should be viable. Herein, a proton deployment strategy is demonstrated via “atomic and nanostructured iron (A/N-Fe) pairs”, comprising atomically dispersed iron active centers spin-polarized by nanostructured iron carbide ferromagnets, to boost the critical protonation steps. The as-designed catalyst displays a broad window (300 mV) for CO selectivity > 90% (98% maximum), even outperforming numerous cutting-edge M–N–C systems. The well-placed control of proton dynamics by A/N-Fe can promote *COOH/*CO formation and simultaneously suppress H2 evolution, benefiting from the magnetic-proximity-induced exchange splitting (spin polarization) that properly adjusts energy levels of the Fe sites’ d-shells, and further those of the adsorbed intermediates’ antibonding molecular orbitals.
. [J]. Frontiers of Chemical Science and Engineering, 2022, 16(12): 1772-1781.
Yingjie Zhao, Xinyue Wang, Xiahan Sang, Sixing Zheng, Bin Yang, Lecheng Lei, Yang Hou, Zhongjian Li. Spin polarization strategy to deploy proton resource over atomic-level metal sites for highly selective CO2 electrolysis. Front. Chem. Sci. Eng., 2022, 16(12): 1772-1781.
R G Grim, Z Huang, M T Guarnieri, J R Ferrell, L Tao, J A Schaidle. Transforming the carbon economy: challenges and opportunities in the convergence of low-cost electricity and reductive CO2 utilization. Energy & Environmental Science, 2020, 13(2): 472–494 https://doi.org/10.1039/C9EE02410G
2
R Kortlever, J Shen, K J P Schouten, F Calle-Vallejo, M T M Koper. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. Journal of Physical Chemistry Letters, 2015, 6(20): 4073–4082 https://doi.org/10.1021/acs.jpclett.5b01559
3
Y Y Birdja, E Perez-Gallent, M C Figueiredo, A J Gottle, F Calle-Vallejo, M T M Koper. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nature Energy, 2019, 4(9): 732–745 https://doi.org/10.1038/s41560-019-0450-y
4
M B Ross, P De Luna, Y Li, C T Dinh, D Kim, P Yang, E H Sargent. Designing materials for electrochemical carbon dioxide recycling. Nature Catalysis, 2019, 2(8): 648–658 https://doi.org/10.1038/s41929-019-0306-7
5
Y J Zhang, V Sethuraman, R Michalsky, A A Peterson. Competition between CO2 reduction and H2 evolution on transition-metal electrocatalysts. ACS Catalysis, 2014, 4(10): 3742–3748 https://doi.org/10.1021/cs5012298
6
E R Cave, C Shi, K P Kuhl, T Hatsukade, D N Abram, C Hahn, K Chan, T F Jaramillo. Trends in the catalytic activity of hydrogen evolution during CO2 electroreduction on transition metals. ACS Catalysis, 2018, 8(4): 3035–3040 https://doi.org/10.1021/acscatal.7b03807
7
T Zheng, K Jiang, H Wang. Recent advances in electrochemical CO2-to-CO conversion on heterogeneous catalysts. Advanced Materials, 2018, 30(48): 1802066 https://doi.org/10.1002/adma.201802066
8
Y Wang, Y Liu, W Liu, J Wu, Q Li, Q Feng, Z Chen, X Xiong, D Wang, Y Lei. Regulating the coordination structure of metal single atoms for efficient electrocatalytic CO2 reduction. Energy & Environmental Science, 2020, 13(12): 4609–4624 https://doi.org/10.1039/D0EE02833A
9
Y Pan, C Zhang, Z Liu, C Chen, Y D Li. Structural regulation with atomic-level precision: from single-atomic site to diatomic and atomic interface catalysis. Matter, 2020, 2(1): 78–110 https://doi.org/10.1016/j.matt.2019.11.014
10
W Zang, Z Kou, S J Pennycook, J Wang. Heterogeneous single atom electrocatalysis, where “singles” are “married”. Advanced Energy Materials, 2020, 10(9): 1903181 https://doi.org/10.1002/aenm.201903181
11
J Jiao, R Lin, S Liu, W C Cheong, C Zhang, Z Chen, Y Pan, J Tang, K Wu, S F Hung, H M Chen, L Zheng, Q Lu, X Yang, B Xu, H Xiao, J Li, D Wang, Q Peng, C Chen, Y Li. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nature Chemistry, 2019, 11(3): 222–228 https://doi.org/10.1038/s41557-018-0201-x
12
C Liu, Y Wu, K Sun, J Fang, A Huang, Y Pan, W C Cheong, Z Zhuang, Z Zhuang, Q Yuan, H L Xin, C Zhang, J Zhang, H Xiao, C Chen, Y Li. Constructing FeN4/graphitic nitrogen atomic interface for high-efficiency electrochemical CO2 reduction over a broad potential window. Chem, 2021, 7(5): 1297–1307 https://doi.org/10.1016/j.chempr.2021.02.001
13
C J Bondue, M Graf, A Goyal, M T M Koper. Suppression of hydrogen evolution in acidic electrolytes by electrochemical CO2 reduction. Journal of the American Chemical Society, 2021, 143(1): 279–285 https://doi.org/10.1021/jacs.0c10397
14
W Ma, S Xie, X G Zhang, F Sun, J Kang, Z Jiang, Q Zhang, D Y Wu, Y Wang. Promoting electrocatalytic CO2 reduction to formate via sulfur-boosting water activation on indium surfaces. Nature Communications, 2019, 10(1): 892 https://doi.org/10.1038/s41467-019-08805-x
15
X Wang, X Sang, C L Dong, S Yao, L Shuai, J Lu, B Yang, Z Li, L Lei, M Qiu, L Dai, Y Hou. Proton capture strategy for enhancing electrochemical CO2 reduction on atomically dispersed metal-nitrogen active sites. Angewandte Chemie International Edition, 2021, 60(21): 11959–11965 https://doi.org/10.1002/anie.202100011
16
W Ju, A Bagger, G P Hao, A Sofia Varela, I Sinev, V Bon, B Roldan Cuenya, S Kaskel, J Rossmeisl, P Strasser. Understanding activity and selectivity of metal−nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nature Communications, 2017, 8(1): 944 https://doi.org/10.1038/s41467-017-01035-z
17
H Zhang, J Li, S Xi, Y Du, X Hai, J Wang, H Xu, G Wu, J Zhang, J Lu, J Wang. A graphene-supported single-atom FeN5 catalytic site for efficient electrochemical CO2 reduction. Angewandte Chemie International Edition, 2019, 58(42): 14871–14876 https://doi.org/10.1002/anie.201906079
18
J Li, S Mao, Y Hou, L Lei, C Yuan. 3D edge-enriched Fe3C@C nanocrystals with a core-shell structure grown on reduced graphene oxide networks for efficient oxygen reduction reaction. ChemSusChem, 2018, 11(18): 3292–3298 https://doi.org/10.1002/cssc.201801084
19
W Zhang, J Yin, M Sun, W Wang, C Chen, M Altunkaya, A H Emwas, Y Han, U Schwingenschlogl, H N Alshareef. Direct pyrolysis of supermolecules: an ultrahigh edge-nitrogen doping strategy of carbon anodes for potassium-ion batteries. Advanced Materials, 2020, 32(25): 2000732 https://doi.org/10.1002/adma.202000732
20
Y Shao, R Pang, X Shi. Stability of two-dimensional iron carbides suspended across graphene pores: first-principles particle swarm optimization. Journal of Physical Chemistry C, 2015, 119(40): 22954–22960 https://doi.org/10.1021/acs.jpcc.5b06555
J Stöhr, H C Siegmann. Magnetism: From Fundamentals to Nanoscale Dynamics. Berlin: Springer, 2006, 235–240
23
M P Marder. Condensed Matter Physics. Hoboken: Wiley, 2010, 811–813
24
J K Norskov, T Bligaard, J Rossmeisl, C H Christensen. Towards the computational design of solid catalysts. Nature Chemistry, 2009, 1(1): 37–46 https://doi.org/10.1038/nchem.121
25
Z J Zhao, S Liu, S Zha, D Cheng, F Studt, G Henkelman, J Gong. Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors. Nature Reviews Materials, 2019, 4(12): 792–804 https://doi.org/10.1038/s41578-019-0152-x
26
X Ren, T Z Wu, Y M Sun, Y Li, G Y Xian, X H Liu, C M Shen, J Gracia, H J Gao, H T Yang, Z J Xu. Spin-polarized oxygen evolution reaction under magnetic field. Nature Communications, 2021, 12(1): 2608 https://doi.org/10.1038/s41467-021-22865-y
27
T Z Wu, X Ren, Y M Sun, S N Sun, G Y Xian, G G Scherer, A C Fisher, D Mandler, J W Ager, A Grimaud, J Wang, C Shen, H Yang, J Gracia, H J Gao, Z J Xu. Spin pinning effect to reconstructed oxyhydroxide layer on ferromagnetic oxides for enhanced water oxidation. Nature Communications, 2021, 12(1): 3634 https://doi.org/10.1038/s41467-021-23896-1
28
W Demtröder. Atoms, Molecules and Photons: An Introduction to Atomic-, Molecular- and Quantum Physics. Berlin: Springer, 2018, 320–322
29
X Zhang, X Q Li, D Zhang, N Q Su, W T Yang, H O Everitt, J Liu. Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation. Nature Communications, 2017, 8(1): 14542 https://doi.org/10.1038/ncomms14542
30
W J Jiang, L Gu, L Li, Y Zhang, X Zhang, L J Zhang, J Q Wang, J S Hu, Z Wei, L J Wan. Understanding the high activity of Fe-N-C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe-Nx. Journal of the American Chemical Society, 2016, 138(10): 3570–3578 https://doi.org/10.1021/jacs.6b00757
31
J Hu, S Wang, J Yu, W Nie, J Sun, S Wang. Duet Fe3C and FeNx sites for H2O2 generation and activation toward enhanced electro-Fenton performance in wastewater treatment. Environmental Science & Technology, 2021, 55(2): 1260–1269 https://doi.org/10.1021/acs.est.0c06825
32
J Li, S Ghoshal, W Liang, M T Sougrati, F Jaouen, B Halevi, S McKinney, G McCool, C Ma, X Yuan, Z F Ma, S Mukerjee, Q Jia. Structural and mechanistic basis for the high activity of Fe−N−C catalysts toward oxygen reduction. Energy & Environmental Science, 2016, 9(7): 2418–2432 https://doi.org/10.1039/C6EE01160H
33
J Gu, C S Hsu, L Bai, H M Chen, X Hu. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science, 2019, 364(6445): 1091–1094 https://doi.org/10.1126/science.aaw7515
34
T Burdyny, W A Smith. CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions. Energy & Environmental Science, 2019, 12(5): 1442–1453 https://doi.org/10.1039/C8EE03134G
35
N J Firet, W A Smith. Probing the reaction mechanism of CO2 electroreduction over Ag films via operando infrared spectroscopy. ACS Catalysis, 2017, 7(1): 606–612 https://doi.org/10.1021/acscatal.6b02382
36
S Zhu, B Jiang, W B Cai, M Shao. Direct observation on reaction intermediates and the role of bicarbonate anions in CO2 electrochemical reduction reaction on Cu surfaces. Journal of the American Chemical Society, 2017, 139(44): 15664–15667 https://doi.org/10.1021/jacs.7b10462
37
H Günzler, H U I R Gremlich. Spectroscopy: an Introduction. Weinheim: Wiley, 2002, 14–16
38
D W H Rankin, N W Mitzel, C A Morrison. Structural Methods in Molecular Inorganic Chemistry. Chichester: Wiley, 2013, 237–238
39
S F A Kettle. Physical Inorganic Chemistry: A Coordination Chemistry Approach. Berlin: Springer, 1996, 229–230
40
R P Bell. The Proton in Chemistry. London: Chapman & Hall, 1973, 232–235
41
A Goyal, G Marcandalli, V A Mints, M T M Koper. Competition between CO2 reduction and hydrogen evolution on a gold electrode under well-defined mass transport conditions. Journal of the American Chemical Society, 2020, 142(9): 4154–4161 https://doi.org/10.1021/jacs.9b10061
42
S Hammes-Schiffer. Theory of proton-coupled electron transfer in energy conversion processes. Accounts of Chemical Research, 2009, 42(12): 1881–1889 https://doi.org/10.1021/ar9001284
43
E Liu, L Jiao, J Li, T Stracensky, Q Sun, S Mukerjee, Q Jia. Interfacial water shuffling the intermediates of hydrogen oxidation and evolution reactions in aqueous media. Energy & Environmental Science, 2020, 13(9): 3064–3074 https://doi.org/10.1039/D0EE01754J
44
Z K Goldsmith, Y C Lam, A V Soudackov, S Hammes-Schiffer. Proton discharge on a gold electrode from triethylammonium in acetonitrile: theoretical modeling of potential-dependent kinetic isotope effects. Journal of the American Chemical Society, 2019, 141(2): 1084–1090 https://doi.org/10.1021/jacs.8b11826
45
Y C Lam, A V Soudackov, S Hammes-Schiffer. Theory of electrochemical proton-coupled electron transfer in diabatic vibronic representation: application to proton discharge on metal electrodes in alkaline solution. Journal of Physical Chemistry C, 2020, 124(50): 27309–27322 https://doi.org/10.1021/acs.jpcc.0c08096
46
D H Deng, L Yu, X Q Chen, G X Wang, L Jin, X L Pan, J Deng, G Q Sun, X H Bao. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angewandte Chemie International Edition, 2013, 52(1): 371–375 https://doi.org/10.1002/anie.201204958
47
Y Hu, J O Jensen, W Zhang, L N Cleemann, W Xing, N J Bjerrum, Q Li. Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts. Angewandte Chemie International Edition, 2014, 53(14): 3675–3679 https://doi.org/10.1002/anie.201400358
48
J Xie, Y Wang. Recent development of CO2 electrochemistry from Li–CO2 batteries to Zn–CO2 batteries. Accounts of Chemical Research, 2019, 52(6): 1721–1729 https://doi.org/10.1021/acs.accounts.9b00179
49
X Wang, J Xie, M A Ghausi, J Lv, Y Huang, M Wu, Y Wang, J Yao. Rechargeable Zn–CO2 electrochemical cells mimicking two-step photosynthesis. Advanced Materials, 2019, 31(17): 1807807 https://doi.org/10.1002/adma.201807807
50
X Liang, J Xiao, W Weng, W Xiao. Electrochemical reduction of carbon dioxide and iron oxide in molten salts to Fe/Fe3C modified carbon for electrocatalytic oxygen evolution. Angewandte Chemie International Edition, 2021, 60(4): 2120–2124 https://doi.org/10.1002/anie.202013257