Since lithium iron phosphate cathode material does not contain high-value metals other than lithium, it is therefore necessary to strike a balance between recovery efficiency and economic benefits in the recycling of waste lithium iron phosphate cathode materials. Here, we describe a selective recovery process that can achieve economically efficient recovery and an acceptable lithium leaching yield. Adjusting the acid concentration and amount of oxidant enables selective recovery of lithium ions. Iron is retained in the leaching residue as iron phosphate, which is easy to recycle. The effects of factors such as acid concentration, acid dosage, amount of oxidant, and reaction temperature on the leaching of lithium and iron are comprehensively explored, and the mechanism of selective leaching is clarified. This process greatly reduces the cost of processing equipment and chemicals. This increases the potential industrial use of this process and enables the green and efficient recycling of waste lithium iron phosphate cathode materials in the future.
. [J]. Frontiers of Chemical Science and Engineering, 2023, 17(6): 749-758.
Ruiqi Li, Kang Li, Wei Wang, Fan Zhang, Shichao Tian, Zhongqi Ren, Zhiyong Zhou. Highly selective and green recovery of lithium ions from lithium iron phosphate powders with ozone. Front. Chem. Sci. Eng., 2023, 17(6): 749-758.
Li:H2SO4:H2O2 (mol/mol/mol) = 1:0.57:2.07, T = 60 °C, t = 120 min
Li: 96.85, Fe: 0.03
[23]
2018
CH3COOH (0.8 mol·L–1), H2O2 (6 vol %)
S/L = 120 g·L–1, T = 50 °C, t = 30 min
Li: 95.05, Fe: 0.10
[28]
2018
C2H2O4 (0.3 mol·L–1)
S/L = 60 g·L–1, T = 80 °C, t = 60 min
Li: 98.00, Fe: 8.00
[29]
2018
Na2S2O8
Li:Na2S2O8 (mol/mol) = 2:1.05, S/L = 300 g·L–1, T = 25 °C, t = 20 min
Li: 99.00, Fe: 0.05
[25]
2019
NaCl
LFP:NaCl (g/g) = 1:2
Li: > 90.00, Fe: < 1.00
[26]
2020
Fe2(SO4)3
Fe2(SO4)3:LFP (mol/mol) = 1:2, T = 28 °C, t = 30 min, S/L = 500 g·L–1
Li: 97.00
[27]
2020
Na2S2O8, H2SO4 (0.3 mol·L–1)
Li:Na2S2O8 (mol/mol) = 0.45, L/S = 11.1 mL·g–1, T = 60 °C, t = 1.5 h
Li: 97.55, Fe: 1.39
[30]
2022
H2O2
S/L = 10 g·L–1, T = 50 °C, t = 30 min
Li: 97.60, Fe: < 1.00
[31]
Tab.1
Fig.1
Fig.2
Fig.3
Fig.4
Fig.5
Solution
C(HCl)/(mol·L–1)
0.01
0.05
0.10
0.20
0.30
0.40
LFP g/100 g HCl solution
0.0040
0.1302
0.5067
1.0563
1.8273
2.4257
FePO4 g/100 g HCl solution
0.00003
0.0001
0.0002
0.0005
0.0018
0.0038
Tab.2
Fig.6
Fig.7
Fig.8
Fig.9
1
W Shen, W J Han, T J Wallington, S L Winkler. China electricity generation greenhouse gas emission intensity in 2030: implications for electric vehicles. Environmental Science & Technology, 2019, 53(10): 6063–6072 https://doi.org/10.1021/acs.est.8b05264
2
J B Dunn, L Gaines, J C Kelly, C James, K G Gallagher. The significance of Li-ion batteries in electric vehicle life-cycle energy and emissions and recycling’s role in its reduction. Energy & Environmental Science, 2015, 8(1): 158–168 https://doi.org/10.1039/C4EE03029J
3
K Richa, C W Babbitt, G Gaustad, X Wang. A future perspective on lithium-ion battery waste flows from electric vehicles. Resources, Conservation and Recycling, 2014, 83(1): 63–76 https://doi.org/10.1016/j.resconrec.2013.11.008
4
X P Chen, J Z Li, D Z Kang, T Zhou, H R Ma. A novel closed-loop process for the simultaneous recovery of valuable metals and iron from a mixed type of spent lithium-ion batteries. Green Chemistry, 2019, 21(23): 6342–6352 https://doi.org/10.1039/C9GC02844G
5
Y Q Wang, N An, L Wen, L Wang, X T Jiang, F Hou, Y X Yin, J Liang. Recent progress on the recycling technology of Li-ion batteries. Journal of Energy Chemistry, 2021, 55(4): 391–419 https://doi.org/10.1016/j.jechem.2020.05.008
W Wang, Y F Wu. An overview of recycling and treatment of spent LiFePO4 batteries in China. Resources, Conservation and Recycling, 2017, 127: 233–243 https://doi.org/10.1016/j.resconrec.2017.08.019
8
G Harper, R Sommerville, E Kendrick, L Driscoll, P Slater, R Stolkin, A Walton, P Christensen, O Heidrich, S Lambert, A Abbott, K Ryder, L Gaines, P Anderson. Recycling lithium-ion batteries from electric vehicles. Nature, 2019, 575(7781): 75–86 https://doi.org/10.1038/s41586-019-1682-5
9
H Omar, S Rohani. Treatment of landfill waste, leachate and landfill gas: a review. Frontiers of Chemical Science and Engineering, 2015, 9(1): 15–32 https://doi.org/10.1007/s11705-015-1501-y
10
J T Hu, J L Zhang, H X Li, Y Q Chen, C Y Wang. A promising approach for the recovery of high value-added metals from spent lithium-ion batteries. Journal of Power Sources, 2017, 351(31): 192–199 https://doi.org/10.1016/j.jpowsour.2017.03.093
11
Z H I Sun, Y Xiao, J Sietsma, H Agterhuis, Y Yang. A cleaner process for selective recovery of valuable metals from electronic waste of complex mixtures of end-of-life electronic products. Environmental Science & Technology, 2015, 49(13): 7981–7988 https://doi.org/10.1021/acs.est.5b01023
12
H Y Zou, E Gratz, D Apelian, Y Wang. A novel method to recycle mixed cathode materials for lithium ion batteries. Green Chemistry, 2013, 15(5): 1183–1191 https://doi.org/10.1039/c3gc40182k
13
S P Barik, G Prabaharan, L Kumar. Leaching and separation of Co and Mn from electrode materials of spent lithium-ion batteries using hydrochloric acid: laboratory and pilot scale study. Journal of Cleaner Production, 2017, 147(20): 37–43 https://doi.org/10.1016/j.jclepro.2017.01.095
14
L P He, S Y Sun, J G Yu. Performance of LiNi1/3Co1/3Mn1/3O2 prepared from spent lithium-ion batteries by a carbonate co-precipitation method. Ceramics International, 2018, 44(1): 351–357 https://doi.org/10.1016/j.ceramint.2017.09.180
15
L Yaug, G X Xi, Y B Xi. Recovery of Co, Mn, Ni, and Li from spent lithium ion batteries for the preparation of LiNixCoyMnzO2 cathode materials. Ceramics International, 2015, 41(9): 11498–11503 https://doi.org/10.1016/j.ceramint.2015.05.115
16
X Song, T Hu, C Liang, H L Long, L Zhou, W Song, L You, Z S Wu, J W Liu. Direct regeneration of cathode materials from spent lithium iron phosphate batteries using a solid phase sintering method. RSC Advances, 2017, 7(8): 4783–4790 https://doi.org/10.1039/C6RA27210J
17
B Xu, P Dong, J G Duan, D Wang, X S Huang, Y J Zhang. Regenerating the used LiFePO4 to high performance cathode via mechanochemical activation assisted V5+ doping. Ceramics International, 2019, 45(9): 11792–11801 https://doi.org/10.1016/j.ceramint.2019.03.057
18
Y L Yao, M Y Zhu, Z Zhao, B H Tong, Y Fan, Z Hua. Hydrometallurgical processes for recycling spent lithium-ion batteries: a critical review. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 13611–13627 https://doi.org/10.1021/acssuschemeng.8b03545
19
L H Wang, J Li, H M Zhou, Z Q Huang, S D Tao, B K Zhai, L Q Liu, L S Hu. Regeneration cathode material mixture from spent lithium iron phosphate batteries. Journal of Materials Science Materials in Electronics, 2018, 29(11): 9283–9290 https://doi.org/10.1007/s10854-018-8958-7
20
H Ku, Y Jung, M Jo, S Park, S Kim, D Yang, K Rhee, E M An, J Sohn, K Kwon. Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching. Journal of Hazardous Materials, 2016, 313(5): 138–146 https://doi.org/10.1016/j.jhazmat.2016.03.062
21
Z W Zhao, X F Si, X H Liu, L H He, X X Liang. Li extraction from high Mg/Li ratio brine with LiFePO4/FePO4 as electrode materials. Hydrometallurgy, 2013, 133: 75–83 https://doi.org/10.1016/j.hydromet.2012.11.013
22
W G Lv, Z H Wang, H B Cao, Y Sun, Y Zhang, Z Sun. A critical review and analysis on the recycling of spent lithium-ion batteries. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 1504–1521 https://doi.org/10.1021/acssuschemeng.7b03811
23
H Li, S Z Xing, Y Liu, F J Li, H Guo, G Kuang. Recovery of lithium, iron, and phosphorus from spent LiFePO4 batteries using stoichiometric sulfuric acid leaching system. ACS Sustainable Chemistry & Engineering, 2017, 5(9): 8017–8024 https://doi.org/10.1021/acssuschemeng.7b01594
24
Q K Jing, J L Zhang, Y B Liu, C Yang, B Z Ma, Y Q Chen, C Y Wang. E-pH diagrams for the Li−Fe−P−H2O system from 298 to 473 K: thermodynamic analysis and application to the wet chemical processes of the LiFePO4 cathode material. Journal of Physical Chemistry C, 2019, 123(23): 14207–14215 https://doi.org/10.1021/acs.jpcc.9b02074
25
J L Zhang, J T Hu, Y B Liu, Q K Jing, C Yang, Y Q Chen, C Y Wang. Sustainable and facile method for the selective recovery of lithium from cathode scrap of spent LiFePO4 batteries. ACS Sustainable Chemistry & Engineering, 2019, 7(6): 5626–5631 https://doi.org/10.1021/acssuschemeng.9b00404
26
K Liu, Q Y Tan, L L Liu, J H Li. Acid-free and selective extraction of lithium from spent lithium iron phosphate batteries via a mechanochemically induced isomorphic substitution. Environmental Science & Technology, 2019, 53(16): 9781–9788 https://doi.org/10.1021/acs.est.9b01919
27
Y Dai, Z D Xu, D Hua, H N Gu, N Wang. Theoretical-molar Fe3+ recovering lithium from spent LiFePO4 batteries: an acid-free, efficient, and selective process. Journal of Hazardous Materials, 2020, 396(5): 122707 https://doi.org/10.1016/j.jhazmat.2020.122707
28
Y X Yang, X Q Meng, H B Cao, X Lin, C M Liu, Y Sun, Y Zhang, Z Sun. Selective recovery of lithium from spent lithium iron phosphate batteries: a sustainable process. Green Chemistry, 2018, 20(13): 3121–3133 https://doi.org/10.1039/C7GC03376A
29
L Li, J Lu, L Y Zhai, X X Zhang, L Curtiss, Y Jin, F Wu, R J Chen, K Amine. A facile recovery process for cathodes from spent lithium iron phosphate batteries by using oxalic acid. CSEE Journal of Power and Energy Systems, 2018, 4(2): 219–225 https://doi.org/10.17775/CSEEJPES.2016.01880
30
H Y Li, H Ye, M C Sun, W J Chen. Process for recycle of spent lithium iron phosphate battery via a selective leaching-precipitation method. Journal of Central South University, 2020, 27(11): 3239–3248 https://doi.org/10.1007/s11771-020-4543-3
31
X J Qiu, B C Zhang, Y L Xu, J G Hu, W T Deng, G Q Zou, H S Hou, Y Yang, W Sun, Y H Hu, X Cao, X Ji. Enabling the sustainable recycling of LiFePO4 from spent lithium-ion batteries. Green Chemistry, 2022, 24(6): 2506–2515 https://doi.org/10.1039/D1GC04784A
S S Behera, P K Parhi. Leaching kinetics study of neodymium from the scrap magnet using acetic acid. Separation and Purification Technology, 2016, 160: 59–66 https://doi.org/10.1016/j.seppur.2016.01.014
34
H Jin, J L Zhang, D D Wang, Q K Jing, Y G Chen, C Y Wang. Facile and efficient recovery of lithium from spent LiFePO4 batteries via air oxidation-water leaching at room temperature. Green Chemistry, 2022, 24(1): 152–162 https://doi.org/10.1039/D1GC03333F
35
H J Shentu, B Xiang, Y J Cheng, T Dong, J Gao, Y G Xia. A fast and efficient method for selective extraction of lithium from spent lithium iron phosphate battery. Green Chemistry, 2021, 23(11): 2506–2515
36
L M Yang, Y F Feng, C G Wang, D F Fang, G P Yi, Z Gao, P H Shao, C L Liu, X B Luo, S L Luo. Closed-loop regeneration of battery-grade FePO4 from lithium extraction slag of spent Li-ion batteries via phosphoric acid mixture selective leaching. Chemical Engineering Journal, 2022, 431(8): 133232 https://doi.org/10.1016/j.cej.2021.133232
37
C Ramana, A Mauger, F Gendron, C Julien, K Zaghib. Study of the Li-insertion/extraction process in LiFePO4/FePO4. Journal of Power Sources, 2009, 187(2): 555–564 https://doi.org/10.1016/j.jpowsour.2008.11.042
38
L Castro, R Dedryvere, Khalifi M El, P E Lippens, J Bréger, C Tessier, D Gonbeau. The spin-polarized electronic structure of LiFePO4 and FePO4 evidenced by in-lab XPS. Journal of Physical Chemistry C, 2010, 114(41): 17995–18000 https://doi.org/10.1021/jp106631v