Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2023, Vol. 17 Issue (10): 1544-1554   https://doi.org/10.1007/s11705-022-2288-2
  本期目录
Nano-copper ions assembled cellulose-based composite with antibacterial activity for biodegradable personal protective mask
Xinyi Shao1, Jian Wang1,2(), Zetan Liu1, Na Hu1, Ruimin Zhang1, Cailin Quan1, Xinjie Yao1, Cuihua Dong3
1. College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
2. National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi’an 710021, China
3. State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
 全文: PDF(5617 KB)   HTML
Abstract

The current SARS-CoV-2 pandemic has resulted in the widespread use of personal protective equipment, particularly face masks. However, the use of commercial disposable face masks puts great pressure on the environment. In this study, nano-copper ions assembled cotton fabric used in face masks to impart antibacterial activity has been discussed. To produce the nanocomposite, the cotton fabric was modified by sodium chloroacetate after its mercerization, and assembled with bactericidal nano-copper ions (about 10.61 mg·g–1) through electrostatic adsorption. It demonstrated excellent antibacterial activity against Staphylococcus aureus and Escherichia coli because the gaps between fibers in the cotton fabric allow the nano-copper ions to be fully released. Moreover, the antibacterial efficiency was maintained even after 50 washing cycles. Furthermore, the face mask constructed with this novel nanocomposite upper layer exhibited a high particle filtration efficiency (96.08% ± 0.91%) without compromising the air permeability (28.9 min·L–1). This green, economical, facile, and scalable process of depositing nano-copper ions onto modified cotton fibric has great potential to reduce disease transmission, resource consumption, and environmental impact of waste, while also expanding the range of protective fabrics.

Key wordscellulose-based    nanocomposite    biodegradable antibacterial fabric    nano-copper ions    face masks
收稿日期: 2022-08-14      出版日期: 2023-10-07
Corresponding Author(s): Jian Wang   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2023, 17(10): 1544-1554.
Xinyi Shao, Jian Wang, Zetan Liu, Na Hu, Ruimin Zhang, Cailin Quan, Xinjie Yao, Cuihua Dong. Nano-copper ions assembled cellulose-based composite with antibacterial activity for biodegradable personal protective mask. Front. Chem. Sci. Eng., 2023, 17(10): 1544-1554.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-022-2288-2
https://academic.hep.com.cn/fcse/CN/Y2023/V17/I10/1544
Fig.1  
Fig.2  
Fig.3  
Fig.4  
SampleAir permeability/(L·min–1)Porosity/%
CF37.193.4
MCF25.081.1
NCCF29.583.2
CDFM28.383.0
Tab.1  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
1 D G Le Couteur, R M Anderson, A B Newman. COVID-19 through the lens of gerontology. Journals of Gerontology: Series A, 2020, 75(9): e119–e120
https://doi.org/10.1093/gerona/glaa077
2 D E Promislow. A geroscience perspective on COVID-19 mortality. Journals of Gerontology: Series A, 2020, 75(9): e30–e33
https://doi.org/10.1093/gerona/glaa094
3 R Verity, L C Okell, I Dorigatti, P Winskill, C Whittaker, N Imai, G Cuomo-Dannenburg, H Thompson, P G T Walker, H Fu, A Dighe, J T Griffin, M Baguelin, S Bhatia, A Boonyasiri, A Cori, Z Cucunubá, R FitzJohn, K Gaythorpe, W Green, A Hamlet, W Hinsley, D Laydon, G Nedjati-Gilani, S Riley, Elsland S van, E Volz, H Wang, Y Wang, X Xi, C A Donnelly, A C Ghani, N M Ferguson. Estimates of the severity of coronavirus disease 2019: a model-based analysis. The Lancet: Infectious Diseases, 2020, 20(6): 669–677
https://doi.org/10.1016/S1473-3099(20)30243-7
4 A Kumar, A Sharma, Y Chen, M M Jones, S T Vanyo, C Li, M B Visser, S D Mahajan, R K Sharma, M T Swihart. Copper@ ZIF-8 core−shell nanowires for reusable antimicrobial face masks. Advanced Functional Materials, 2021, 31(10): 2008054
https://doi.org/10.1002/adfm.202008054
5 N H L Leung, D K W Chu, E Y C Shiu, K H Chan, J J McDevitt, B J P Hau, H L Yen, Y Li, D K M Ip, J S M Peiris, W H Seto, G M Leung, D K Milton, B J Cowling. Respiratory virus shedding in exhaled breath and efficacy of face masks. Nature Medicine, 2020, 26(5): 676–680
https://doi.org/10.1038/s41591-020-0843-2
6 C Deng, F Seidi, Q Yong, X Y Jin, C C Li, L Zheng, Z H Yuan, H N Xiao. Virucidal and biodegradable specialty cellulose nonwovens as personal protective equipment against COVID-19 pandemic. Journal of Advanced Research, 2022, 39: 147–156
https://doi.org/10.1016/j.jare.2021.11.002
7 X Yang, C Y Ou, H Y Yang, L Liu, T Song, M Kang, H L Lin, J Hang. Transmission of pathogen-laden expiratory droplets in a coach bus. Journal of Hazardous Materials, 2020, 397: 122609
https://doi.org/10.1016/j.jhazmat.2020.122609
8 S W Xiong, P Fu, Q Zou, L Chen, M Jiang, P Zhang, Z Wang, L Cui, H Guo, J G Gai. Heat conduction and antibacterial hexagonal boron nitride/polypropylene nanocomposite fibrous membranes for face masks with long-time wearing performance. ACS Applied Materials & Interfaces, 2020, 13(1): 196–206
https://doi.org/10.1021/acsami.0c17800
9 J J Klemeš, Y V Fan, R R Tan, P Jiang. Minimising the present and future plastic waste, energy and environmental footprints related to COVID-19. Renewable & Sustainable Energy Reviews, 2020, 127: 109883
https://doi.org/10.1016/j.rser.2020.109883
10 S Choi, H Jeon, M Jang, H Kim, G Shin, J M Koo, M Lee, H K Sung, Y Eom, H S Yang, J Jegal, J Park, D X Oh, S Y Hwang. Biodegradable, efficient, and breathable multi-use face mask filter. Advanced Science, 2021, 8(6): 2003155
https://doi.org/10.1002/advs.202003155
11 C B Hiragond, A S Kshirsagar, V V Dhapte, T Khanna, P Joshi, P V More. Enhanced anti-microbial response of commercial face mask using colloidal silver nanoparticles. Vacuum, 2018, 156: 475–482
https://doi.org/10.1016/j.vacuum.2018.08.007
12 X Meng, C Duan, Y L Zhang, W L Lu, W L Wang, Y H Ni. Corncob-supported Ag NPs@ ZIF-8 nanohybrids as multifunction biosorbents for wastewater remediation: robust adsorption, catalysis and antibacterial activity. Composites Science and Technology, 2020, 200: 108384
https://doi.org/10.1016/j.compscitech.2020.108384
13 D Y Sun, J Turner, N Jiang, S S Zhu, L Zhang, B G Falzon, C P McCoy, P Maguire, D Mariotti, D Sun. Atmospheric pressure microplasma for antibacterial silver nanoparticle/chitosan nanocomposites with tailored properties. Composites Science and Technology, 2020, 186: 107911
https://doi.org/10.1016/j.compscitech.2019.107911
14 Y P Wu, Y Yang, Z J Zhang, Z H Wang, Y B Zhao, L Sun. A facile method to prepare size-tunable silver nanoparticles and its antibacterial mechanism. Advanced Powder Technology, 2018, 29(2): 407–415
https://doi.org/10.1016/j.apt.2017.11.028
15 M H Wan, H D Zhao, Z H Wang, X Y Zou, Y B Zhao, L Sun. Fabrication of Ag modified SiO2 electrospun nanofibrous membranes as ultrasensitive and high stable SERS substrates for multiple analytes detection. Colloid and Interface Science Communications, 2021, 42: 100428
https://doi.org/10.1016/j.colcom.2021.100428
16 Z H Ni, X X Gu, Y L He, Z H Wang, X Y Zou, Y B Zhao, L Sun. Synthesis of silver nanoparticle-decorated hydroxyapatite (HA@Ag) poriferous nanocomposites and the study of their antibacterial activities. RSC Advances, 2018, 8(73): 41722–41730
https://doi.org/10.1039/C8RA08148D
17 M Hashmi, S Ullah, I S Kim. Copper oxide (CuO) loaded polyacrylonitrile (PAN) nanofiber membranes for antimicrobial breath mask applications. Current Research in Biotechnology, 2019, 1: 1–10
https://doi.org/10.1016/j.crbiot.2019.07.001
18 B Q Jia, Y Mei, L Cheng, J P Zhou, L N Zhang. Preparation of copper nanoparticles coated cellulose films with antibacterial properties through one-step reduction. ACS Applied Materials & Interfaces, 2012, 4(6): 2897–2902
https://doi.org/10.1021/am3007609
19 H Agarwal, S Menon, S V Kumar, S Rajeshkumar. Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route. Chemico-Biological Interactions, 2018, 286: 60–70
https://doi.org/10.1016/j.cbi.2018.03.008
20 X T Qian, Z H Gu, Q Tang, A M Hong, Z L Xu, Y H Dai, X Y Bian, H J Lou, M Mortimer, M Baalousha, L Li. Chemical transformations of nanoscale zinc oxide in simulated sweat and its impact on the antibacterial efficacy. Journal of Hazardous Materials, 2021, 410: 124568
https://doi.org/10.1016/j.jhazmat.2020.124568
21 P Kumar, S Roy, A Sarkar, A Jaiswal. Reusable MoS2-modified antibacterial fabrics with photothermal disinfection properties for repurposing of personal protective masks. ACS Applied Materials & Interfaces, 2021, 13(11): 12912–12927
https://doi.org/10.1021/acsami.1c00083
22 G Borkow, J Gabbay. Copper, an ancient remedy returning to fight microbial, fungal and viral infections. Current Opinion in Chemical Biology, 2009, 3(3): 272–278
23 S Karabulut, A Karabakan, A Denizli, Y Yürüm. Batch removal of copper (II) and zinc (II) from aqueous solutions with low-rank Turkish coals. Separation and Purification Technology, 2000, 18(3): 177–184
https://doi.org/10.1016/S1383-5866(99)00067-2
24 M Ramos, S Fiol, R López, J Antelo, F Arce. Analysis of the effect of pH on Cu2+-fulvic acid complexation using a simple electrostatic model. Environmental Science & Technology, 2002, 36(14): 3109–3113
https://doi.org/10.1021/es0101734
25 H Y Bai, Z Z Liang, D W Wang, J Q Guo, S W Zhang, P M Ma, W F Dong. Biopolymer nanocomposites with customized mechanical property and exceptionally antibacterial performance. Composites Science and Technology, 2020, 199: 108338
https://doi.org/10.1016/j.compscitech.2020.108338
26 C Deng, F Seidi, Q Yong, X Y Jin, C C Li, X Zhang, J Q Han, Y Q Liu, Y Huang, Y Y Wang. Antiviral/antibacterial biodegradable cellulose nonwovens as environmentally friendly and bioprotective materials with potential to minimize microplastic pollution. Journal of Hazardous Materials, 2022, 424: 127391
https://doi.org/10.1016/j.jhazmat.2021.127391
27 N A Patil, P M Gore, N J Prakash, P Govindaraj, R Yadav, V Verma, B Kandasubramanian. Needleless electrospun phytochemicals encapsulated nanofibre based 3-ply biodegradable mask for combating COVID-19 pandemic. Chemical Engineering Journal, 2021, 416: 129152
https://doi.org/10.1016/j.cej.2021.129152
28 Q B Xu, L J Xie, H Diao, F Li, Y Y Zhang, F Y Fu, X D Liu. Antibacterial cotton fabric with enhanced durability prepared using silver nanoparticles and carboxymethyl chitosan. Carbohydrate Polymers, 2017, 177: 187–193
https://doi.org/10.1016/j.carbpol.2017.08.129
29 W A Abbas, B S Shaheen, L G Ghanem, I M Badawy, M M Abodouh, S M Abdou, N K Allam. Cost-effective face mask filter based on hybrid composite nanofibrous layers with high filtration efficiency. Langmuir, 2021, 37(24): 7492–7502
https://doi.org/10.1021/acs.langmuir.1c00926
30 B Bai, X Mi, X Xiang, P A Heiden, C L Heldt. Non-enveloped virus reduction with quaternized chitosan nanofibers containing graphene. Carbohydrate Research, 2013, 380: 137–142
https://doi.org/10.1016/j.carres.2013.08.020
31 S Sathiyavimal, S Vasantharaj, T Kaliannan, A Pugazhendhi. Eco-biocompatibility of chitosan coated biosynthesized copper oxide nanocomposite for enhanced industrial (azo) dye removal from aqueous solution and antibacterial properties. Carbohydrate Polymers, 2020, 241: 116243
https://doi.org/10.1016/j.carbpol.2020.116243
32 M Dumont, R Villet, M Guirand, A Montembault, T Delair, S Lack, M Barikosky, A Crepet, P Alcouffe, F Laurent, L David. Processing and antibacterial properties of chitosan-coated alginate fibers. Carbohydrate Polymers, 2018, 190: 31–42
https://doi.org/10.1016/j.carbpol.2017.11.088
33 K Varaprasad, G M Raghavendra, T Jayaramudu, J Seo. Nano zinc oxide-sodium alginate antibacterial cellulose fibres. Carbohydrate Polymers, 2016, 135: 349–355
https://doi.org/10.1016/j.carbpol.2015.08.078
34 M Shaban, F Mohamed, S Abdallah. Production and characterization of superhydrophobic and antibacterial coated fabrics utilizing ZnO nanocatalyst. Scientific Reports, 2018, 8(1): 1–15
https://doi.org/10.1038/s41598-018-22324-7
35 J Wang, M Dang, C Duan, W Zhao, K Wang. Carboxymethylated cellulose fibers as low-cost and renewable adsorbent materials. Industrial & Engineering Chemistry Research, 2017, 56(51): 14940–14948
https://doi.org/10.1021/acs.iecr.7b03697
36 J Wang, M Liu, C Duan, J P Sun, Y W Xu. Preparation and characterization of cellulose-based adsorbent and its application in heavy metal ions removal. Carbohydrate Polymers, 2019, 206: 837–843
https://doi.org/10.1016/j.carbpol.2018.11.059
37 X Y Qin, C Duan, X M Feng, Y L Zhang, L Dai, Y J Xu, Y H Ni. Integrating phosphotungstic acid-assisted prerefining with cellulase treatment for enhancing the reactivity of kraft-based dissolving pulp. Bioresource Technology, 2021, 320: 124283
https://doi.org/10.1016/j.biortech.2020.124283
38 J Wang, Z Liu, X Y Shao, N Hu, M Liu, Y W Xu. A novel preparation method and characterization of fluorescent cellulose fibers. Cellulose, 2020, 27(7): 3651–3659
https://doi.org/10.1007/s10570-020-03062-4
39 R R Si, Y H Chen, D Q Wang, D M Yu, Q J Ding, R G Li, C J Wu. Nanoarchitectonics for high adsorption capacity carboxymethyl cellulose nanofibrils-based adsorbents for efficient Cu2+ removal. Nanomaterials, 2022, 12(1): 160
https://doi.org/10.3390/nano12010160
40 K JuengchareonpoonaP WanichpongpanaV Boonamnuayvitaya. Graphene oxide and carboxymethylcellulose film modified by citric acid for antibiotic removal. Journal of Environmental Chemical Engineering, 2021, 9, 1: 104637
41 D N Phan, N Dorjjugder, M Q Khan, Y Saito, G Taguchi, H Lee, Y Mukai, I S Kim. Synthesis and attachment of silver and copper nanoparticles on cellulose nanofibers and comparative antibacterial study. Cellulose, 2019, 26(11): 6629–6640
https://doi.org/10.1007/s10570-019-02542-6
42 Y Liu, J H Xin, C H Choi. Cotton fabrics with single-faced superhydrophobicity. Langmuir, 2012, 28(50): 17426–17434
https://doi.org/10.1021/la303714h
43 S M Imani, L Ladouceur, T Marshall, R Maclachlan, L Soleymani, T F Didar. Antimicrobial nanomaterials and coatings: current mechanisms and future perspectives to control the spread of viruses including SARS-CoV-2. ACS Nano, 2020, 14(10): 12341–12369
https://doi.org/10.1021/acsnano.0c05937
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed