Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2023, Vol. 17 Issue (9): 1301-1310   https://doi.org/10.1007/s11705-022-2295-3
  本期目录
Efficient flower-like ZnSe/Cu0.08Zn0.92S photocatalyst for hydrogen production application
Ying Wang1, Yue Han1, Ruiyang Zhao3(), Jishu Han1(), Lei Wang1,2
1. Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
2. Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
3. College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
 全文: PDF(5724 KB)   HTML
Abstract

Photocatalytic hydrogen production utilizing abundant solar energy to produce high-calorie, clean, and pollution-free hydrogen is an important approach to solving environmental and resource problems. In this work, a high-efficiency flower-like ZnSe/Cu0.08Zn0.92S photocatalyst was constructed through element doping and the formation of a Z-scheme heterojunction. The synergistic effect of Cu doping and the built-in electric field in the heterojunction enhanced light absorption and utilization by the ZnSe/Cu0.08Zn0.92S microflowers, accelerated the separation and transfer of photogenerated electrons and effectively inhibited electron–hole recombination. Thus the photocatalytic hydrogen production ability of the ZnSe/Cu0.08Zn0.92S microflowers was increased significantly. The highly stable ZnSe/Cu0.08Zn0.92S microflowers could provide excellent catalysis of photocatalytic hydrogen production.

Key wordsphotocatalysis    Cu0.08Zn0.92S    ZnSe    hydrogen production
收稿日期: 2022-10-07      出版日期: 2023-08-29
Corresponding Author(s): Ruiyang Zhao,Jishu Han   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2023, 17(9): 1301-1310.
Ying Wang, Yue Han, Ruiyang Zhao, Jishu Han, Lei Wang. Efficient flower-like ZnSe/Cu0.08Zn0.92S photocatalyst for hydrogen production application. Front. Chem. Sci. Eng., 2023, 17(9): 1301-1310.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-022-2295-3
https://academic.hep.com.cn/fcse/CN/Y2023/V17/I9/1301
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
1 N Xiao, S S Li, X L Li, L Ge, Y Q Gao, N Li. The roles and mechanism of cocatalysts in photocatalytic water splitting to produce hydrogen. Chinese Journal of Catalysis, 2020, 41(4): 642–671
https://doi.org/10.1016/S1872-2067(19)63469-8
2 L L Li. ul Hasan I M, Farwa, He R N, Peng L W, Xu N N, Niazi N K, Zhang J N, Qiao J L. Copper as a single metal atom based photo-, electro-, and photoelectrochemical catalyst decorated on carbon nitride surface for efficient CO2 reduction: a review. Nano Research Energy, 2022, 1(2): e9120015
3 Y R Sun, C Xue, L C Chen, Y K Li, S W Guo, Y L Shen, F Dong, G S Shao, P Zhang. Enhancement of interfacial charge transportation through construction of 2D–2D p-n heterojunctions in hierarchical 3D CNFs/MoS2/ZnIn2S4 composites to enable high-efficiency photocatalytic hydrogen evolution. Solar RRL, 2021, 5(3): 2000722
https://doi.org/10.1002/solr.202000722
4 X D Jing, N Lu, J D Huang, P Zhang, Z Y Zhang. One-step hydrothermal synthesis of S-defect-controlled ZnIn2S4 microflowers with improved kinetics process of charge-carriers for photocatalytic H2 evolution. Journal of Energy Chemistry, 2021, 58: 397–407
https://doi.org/10.1016/j.jechem.2020.10.032
5 Y T Dai, Y J Xiong. Control of selectivity in organic synthesis via heterogeneous photocatalysis under visible light. Nano Research Energy, 2022, 1(1): e9120006
https://doi.org/10.26599/NRE.2022.9120006
6 F Y Liu, M Y Wang, X L Liu, B Wang, C F Li, C N Liu, C N Liu, Z Lin, F Huang. A rapid and robust light-and-solution-triggered in situ crafting of organic passivating membrane over metal halide perovskites for markedly improved stability and photocatalysis. Nano Letters, 2021, 21(4): 1643–1650
https://doi.org/10.1021/acs.nanolett.0c04299
7 B Wang, M Y Wang, F Y Liu, Q Zhang, S Yan, X L Liu, F Huang. Ti3C2: an ideal co-catalyst?. Angewandte Chemie International Edition, 2020, 59(5): 1914–1918
https://doi.org/10.1002/anie.201913095
8 S W Guo, Y K Li, C Xue, Y R Sun, C Wu, G S Shao, P Zhang. Controllable construction of hierarchically CdIn2S4/CNFs/Co4S3 nanofiber networks towards photocatalytic hydrogen evolution. Chemical Engineering Journal, 2021, 419: 129213
https://doi.org/10.1016/j.cej.2021.129213
9 X Q Hao, Y C Wang, J Zhou, Z W Cui, Y Wang, Z G Zou. Zinc vacancy-promoted photocatalytic activity and photostability of ZnS for efficient visible-light-driven hydrogen evolution. Applied Catalysis B: Environmental, 2018, 221: 302–311
https://doi.org/10.1016/j.apcatb.2017.09.006
10 J S Chen, F Xin, S Y Qin, X H Yin. Photocatalytically reducing CO2 to methyl formate in methanol over ZnS and Ni-doped ZnS photocatalysts. Chemical Engineering Journal, 2013, 230: 506–512
https://doi.org/10.1016/j.cej.2013.06.119
11 M Yang, D Ren, S D Sun, J Cui, Q Yang, Y G Luo, S H Liang. One-pot construction of unprecedented direct Z-scheme ZnS/GaOOH heterojunction for photodegradation of antibiotics. Applied Surface Science, 2022, 576: 151742
https://doi.org/10.1016/j.apsusc.2021.151742
12 B Xiao, T P Lv, J H Zhao, Q Rong, H Zhang, H T Wei, J C He, J Zhang, Y M Zhang, Y Peng, Q Liu. Synergistic effect of the surface vacancy defects for promoting photocatalytic stability and activity of ZnS nanoparticles. ACS Catalysis, 2021, 11(21): 13255–13265
https://doi.org/10.1021/acscatal.1c03476
13 L P Bao, Y J Dong, C H Dai, G D Xu, Y Yang, X Liu, D W Ma, Y Jia, C Zeng. Optimizing the electronic structure of ZnS via cobalt surface doping for promoted photocatalytic hydrogen production. Inorganic Chemistry, 2021, 60(20): 15712–15723
https://doi.org/10.1021/acs.inorgchem.1c02394
14 L H Zhang, F D Zhang, H Q Xue, J F Gao, Y Peng, W Y Song, L Ge. Mechanism investigation of PtPd decorated Zn0.5Cd0.5S nanorods with efficient photocatalytic hydrogen production combining with kinetics and thermodynamics. Chinese Journal of Catalysis, 2021, 42(10): 1677–1688
https://doi.org/10.1016/S1872-2067(21)63791-9
15 Z L Liu, J Xu, C J Xiang, Y Liu, L J Ma, L Y Hu. S-scheme heterojunction based on ZnS/CoMoO4 ball-and-rod composite photocatalyst to promote photocatalytic hydrogen production. Applied Surface Science, 2021, 569: 150973
https://doi.org/10.1016/j.apsusc.2021.150973
16 J X Bai, R C Shen, W L Chen, J Xie, P Zhang, Z M Jiang, X Li. Enhanced photocatalytic H2 evolution based on a Ti3C2/Zn0.7Cd0.3S/Fe2O3 Ohmic/S-scheme hybrid heterojunction with cascade 2D coupling interfaces. Chemical Engineering Journal, 2022, 429: 132587
https://doi.org/10.1016/j.cej.2021.132587
17 J X Bai, R C Shen, Z M Jiang, P Zhang, Y J Li, X Li. Integration of 2D layered CdS/WO3 S-scheme heterojunctions and metallic Ti3C2 MXene-based Ohmic junctions for effective photocatalytic H2 generation. Chinese Journal of Catalysis, 2022, 43(2): 359–369
https://doi.org/10.1016/S1872-2067(21)63883-4
18 X Y Gao, D Q Zeng, J R Yang, W J Ong, T Fujita, X L He, J Q Liu, Y Z Wei. Ultrathin Ni(OH)2 nanosheets decorated with Zn0.5Cd0.5S nanoparticles as 2D/0D heterojunctions for highly enhanced visible light-driven photocatalytic hydrogen evolution. Chinese Journal of Catalysis, 2021, 42(7): 1137–1146
https://doi.org/10.1016/S1872-2067(20)63728-7
19 R C Shen, Y N Ding, S B Li, P Zhang, Q J Xiang, Y H Ng, X Li. Constructing low-cost Ni3C/twin-crystal Zn0.5Cd0.5S heterojunction/homojunction nanohybrids for efficient photocatalytic H2 evolution. Chinese Journal of Catalysis, 2021, 42(1): 25–36
https://doi.org/10.1016/S1872-2067(20)63600-2
20 X W Ma, H F Lin, Y Y Li, L Wang, X P Pu, X J Yi. Dramatically enhanced visible-light-responsive H2 evolution of Cd1−xZnxS via the synergistic effect of Ni2P and 1T/2H MoS2 cocatalysts. Chinese Journal of Structural Chemistry, 2021, 40(1): 7–22
21 Z K Xin, M Y Huang, Y Wang, Y J Gao, Q Guo, X B Li, C H Tung, L Z Wu. Reductive carbon–carbon coupling on metal sites regulates photocatalytic CO2 reduction in water using ZnSe quantum dots. Angewandte Chemie International Edition, 2022, 61(31): e202207222
https://doi.org/10.1002/anie.202207222
22 S Kahng, J H Kim. Optimal oxidation of CuxZn1−xS photocatalysts for enhanced solar H2 production by efficient charge separations. Ceramics International, 2021, 47(2): 2848–2856
https://doi.org/10.1016/j.ceramint.2020.09.139
23 Y Wang, J R Peng, Y F Xu, H C Bai, R Y Zhao, J S Han, L Wang. Hollow In2O3 nanotubes decorated with Cd0.67Mo0.33Se QDs for enhanced photocatalytic hydrogen production performance. International Journal of Hydrogen Energy, 2021, 46(59): 30393–30401
https://doi.org/10.1016/j.ijhydene.2021.06.179
24 F Zhang, Y H Li, J Y Li, Z R Tang, Y J Xu. 3D graphene-based gel photocatalysts for environmental pollutants degradation. Environmental Pollution, 2019, 253: 365–376
https://doi.org/10.1016/j.envpol.2019.06.089
25 S Cho, C Ahn, J Park, S Jeon. 3D nanostructured N-doped TiO2 photocatalysts with enhanced visible absorption. Nanoscale, 2018, 10(20): 9747–9751
https://doi.org/10.1039/C8NR02330A
26 P Y Kuang, M Sayed, J J Fan, B Cheng, J G Yu. 3D graphene-based H2-production photocatalyst and electrocatalyst. Advanced Energy Materials, 2020, 10(14): 1903802
https://doi.org/10.1002/aenm.201903802
27 Y S Cheng, H Yang, J Zhang, X S Xiong, C Chen, J H Zeng, J H Xi, Y J Yuan, Z G Ji. Novel 0D/2D ZnSe/SnSe heterojunction photocatalysts exhibiting enhanced photocatalytic and photoelectrochemical activities. Journal of Alloys and Compounds, 2022, 897: 163123
https://doi.org/10.1016/j.jallcom.2021.163123
28 D Y Li, S Hussain, Y J Wang, C Huang, P Li, M Y Wang, T He. ZnSe/CdSe Z-scheme composites with Se vacancy for efficient photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2021, 286: 119887
https://doi.org/10.1016/j.apcatb.2021.119887
29 P Li, L J Guo, S M Chen, G Luo, S Zhu, Y J Wang, L Song, T He. Facile modulation of different vacancies in ZnS nanoplates for efficient solar fuel production. Journal of Materials Chemistry A, 2021, 9(12): 7977–7990
https://doi.org/10.1039/D0TA12400A
30 J Dong, W J Fang, W W Xia, Q H Lu, X H Zeng. Facile preparation of ZnxCd1−xS/ZnS heterostructures with enhanced photocatalytic hydrogen evolution under visible light. RSC Advances, 2021, 11(35): 21642–21650
https://doi.org/10.1039/D1RA03195C
31 Y Wang, Q J Ji, J X Xu, J Wan, L Wang. Activation of peroxydisulfate using N-doped carbon-encapsulated Ni species for efficient degradation of tetracycline. Separation and Purification Technology, 2021, 276: 119369
https://doi.org/10.1016/j.seppur.2021.119369
32 Y F Chen, X M Yan, J X Xu, L Wang. K+, Ni and carbon co-modification promoted two-electron O2 reduction for photocatalytic H2O2 production by crystalline carbon nitride. Journal of Materials Chemistry A, 2021, 9(42): 24056–24063
https://doi.org/10.1039/D1TA06960H
33 Y H Feng, M Y Xu, P L Tremblay, T Zhang. The one-pot synthesis of a ZnSe/ZnS photocatalyst for H2 evolution and microbial bioproduction. International Journal of Hydrogen Energy, 2021, 46(42): 21901–21911
https://doi.org/10.1016/j.ijhydene.2021.04.024
34 Y Liu, Y S Zhou, X Zhou, X L Jin, B B Li, J Y Liu, G Chen. Cu doped SnS2 nanostructure induced sulfur vacancy towards boosted photocatalytic hydrogen evolution. Chemical Engineering Journal, 2021, 407: 127180
https://doi.org/10.1016/j.cej.2020.127180
35 M L Feng, H P Zhou, W M Guo, D K Zhang, L J Ye, W J Li, J G Ma, G Y Wang, S J Chen. Fabrication of P-type transparent conducting CuxZn1−xS films on glass substrates with high conductivity and optical transparency. Journal of Alloys and Compounds, 2018, 750: 750–756
https://doi.org/10.1016/j.jallcom.2018.03.402
36 C L Hu, L Zhang, Z J Zhao, A Li, X X Chang, J L Gong. Synergism of geometric construction and electronic regulation: 3D Se-(NiCo)Sx/(OH)x nanosheets for highly efficient overall water splitting. Advanced Materials, 2018, 30(12): 1705538
https://doi.org/10.1002/adma.201705538
37 Y Su, D Ao, H Liu, Y Wang. MOF-derived yolk–shell CdS microcubes with enhanced visible-light photocatalytic activity and stability for hydrogen evolution. Journal of Materials Chemistry A, 2017, 5(18): 8680–8689
https://doi.org/10.1039/C7TA00855D
38 Y Su, Z Zhang, H Liu, Y Wang. Cd0.2Zn0.8S@UiO-66-NH2 nanocomposites as efficient and stable visible-light-driven photocatalyst for H2 evolution and CO2 reduction. Applied Catalysis B: Environmental, 2017, 200: 448–457
https://doi.org/10.1016/j.apcatb.2016.07.032
39 W Z Cao, F Liang, D J Mei, J Q Jiang, Y D Wu, S Y Zhang, Z S Lin. Rational band design in metal chalcogenide Ba6Zn6HfS14: splitting orbitals, narrowing the forbidden gap, and boosting photocatalyst properties. Crystal Growth & Design, 2019, 19(1): 193–199
https://doi.org/10.1021/acs.cgd.8b01256
40 S Karazhanov, P Ravindran, A Kjekhus, H Fjellvåg, U Grossner, B Svensson. Electronic structure and band parameters for ZnX (X = O, S, Se, Te). Journal of Crystal Growth, 2006, 287(1): 162–168
https://doi.org/10.1016/j.jcrysgro.2005.10.061
41 S H Wei, A Zunger. Band gaps and spin-orbit splitting of ordered and disordered AlxGa1−xAs and GaAsxSb1−x alloys. Physical Review B: Condensed Matter, 1989, 39(5): 3279–3304
https://doi.org/10.1103/PhysRevB.39.3279
42 S C Zhang, Z F Liu, W G Yan, Z G Guo, M N Ruan. Decorating non-noble metal plasmonic Al on a TiO2/Cu2O photoanode to boost performance in photoelectrochemical water splitting. Chinese Journal of Catalysis, 2020, 41(12): 1884–1893
https://doi.org/10.1016/S1872-2067(20)63637-3
43 F X Dai, Y Wang, R Y Zhao, X R Zhou, J S Han, L Wang. ZnIn2S4 modified CaTiO3 nanocubes with enhanced photocatalytic hydrogen performance. International Journal of Hydrogen Energy, 2020, 45(53): 28783–28791
https://doi.org/10.1016/j.ijhydene.2020.07.228
44 S Cao, L Y Piao. Considerations for a more accurate evaluation method for photocatalytic water splitting. Angewandte Chemie International Edition, 2020, 59(42): 18312–18320
https://doi.org/10.1002/anie.202009633
45 X H Jiang, L S Zhang, H Y Liu, D Wu, F Y Wu, L Tian, L L Liu, J P Zou, S L Luo, B B Chen. Silver single atom in carbon nitride catalyst for highly efficient photocatalytic hydrogen evolution. Angewandte Chemie International Edition, 2020, 59(51): 23112–23116
https://doi.org/10.1002/anie.202011495
46 C J Chang, W C Tsai. CuS–ZnS decorated Fe3O4 nanoparticles as magnetically separable composite photocatalysts with excellent hydrogen production activity. International Journal of Hydrogen Energy, 2019, 44(37): 20872–20880
https://doi.org/10.1016/j.ijhydene.2018.06.083
47 P Karthik, T Kumar, B Neppolian. Redox couple mediated charge carrier separation in g-C3N4/CuO photocatalyst for enhanced photocatalytic H2 production. International Journal of Hydrogen Energy, 2020, 45(13): 7541–7551
https://doi.org/10.1016/j.ijhydene.2019.06.045
48 W Chen, L Chang, S B Ren, Z C He, G B Huang, X H Liu. Direct Z-scheme 1D/2D WO2.72/ZnIn2S4 hybrid photocatalysts with highly-efficient visible-light-driven photodegradation towards tetracycline hydrochloride removal. Journal of Hazardous Materials, 2020, 384: 121308
https://doi.org/10.1016/j.jhazmat.2019.121308
49 H R Cai, B Wang, L F Xiong, J L Bi, H J Hao, X J Yu, C Li, J M Liu, S C Yang. Boosting photocatalytic hydrogen evolution of g-C3N4 catalyst via lowering the Fermi level of co-catalyst. Nano Research, 2022, 15(2): 1128–1134
https://doi.org/10.1007/s12274-021-3615-5
[1] FCE-22120-OF-WY_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed