1. Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Photoelectronic Technology, Institute of Photoelectronic Thin Film Devices and Technology of Nankai University (Ministry of Education), Tianjin 300350, China 2. Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 201800, China
Based on its band alignment, p-type nickel oxide (NiOx) is an excellent candidate material for hole transport layers in crystalline silicon heterojunction solar cells, as it has a small ΔEV and large ΔEC with crystalline silicon. Herein, to overcome the poor hole selectivity of stoichiometric NiOx due to its low carrier concentration and conductivity, silver-doped nickel oxide (NiOx:Ag) hole transport layers with high carrier concentrations were prepared by co-sputtering high-purity silver sheets and pure NiOx targets. The improved electrical conductivity of NiOx was attributed to the holes generated by the Ag+ substituents for Ni2+, and moreover, the introduction of Ag+ also increased the amount of Ni3+ present, both of which increased the carrier concentration in NiOx. Ag+ doping also reduced the c-Si/NiOx contact resistivity and improved the hole-selective contact with NiOx. Furthermore, the problems of particle clusters and interfacial defects on the surfaces of NiOx:Ag films were solved by UV-ozone oxidation and high-temperature annealing, which facilitated separation and transport of carriers at the c-Si/NiOx interface. The constructed c-Si/NiOx:Ag solar cell exhibited an increase in open-circuit voltage from 490 to 596 mV and achieved a conversion efficiency of 14.4%.
S Nie , C Chen , C Zhu . Advanced biomass materials: progress in the applications for energy, environmental, and emerging fields. Frontiers of Chemical Science and Engineering, 2023, 17(7): 795–797 https://doi.org/10.1007/s11705-023-2336-6
2
D P Hanak , V Manovic . Linking renewables and fossil fuels with carbon capture via energy storage for a sustainable energy future. Frontiers of Chemical Science and Engineering, 2020, 14(3): 453–459 https://doi.org/10.1007/s11705-019-1892-2
3
M P Santos , D P Hanak . Carbon capture for decarbonisation of energy-intensive industries: a comparative review of techno-economic feasibility of solid looping cycles. Frontiers of Chemical Science and Engineering, 2022, 16(9): 1291–1317 https://doi.org/10.1007/s11705-022-2151-5
4
F Liu , Y Lai , B Zhao , R Bradley , W Wu . Photothermal materials for efficient solar powered steam generation. Frontiers of Chemical Science and Engineering, 2019, 13(4): 636–653 https://doi.org/10.1007/s11705-019-1824-1
5
X Wang , Z Zhang , Z Guo , C Su , L Sun . Energy structure transformation in the context of carbon neutralization: evolutionary game analysis based on inclusive development of coal and clean energy. Journal of Cleaner Production, 2023, 398: 136626 https://doi.org/10.1016/j.jclepro.2023.136626
6
D Atsu , I Seres , I Farkas . The state of solar PV and performance analysis of different PV technologies grid-connected installations in Hungary. Renewable & Sustainable Energy Reviews, 2021, 141: 110808 https://doi.org/10.1016/j.rser.2021.110808
7
M Jaxa-Rozen , E Trutnevyte . Sources of uncertainty in long-term global scenarios of solar photovoltaic technology. Nature Climate Change, 2021, 11(3): 266–273 https://doi.org/10.1038/s41558-021-00998-8
8
D Phong Pham , S Kim , V A Dao , Y Kim , J Yi . Quantum-well passivating contact at polysilicon/crystalline silicon interface for crystalline silicon solar cells. Chemical Engineering Journal, 2022, 449: 137835 https://doi.org/10.1016/j.cej.2022.137835
9
L Li , L Ying , Y Lin , X Li , X Zhou , G Du , Y Gao , W Liu , L Lu , J Wang . et al.. Effective hydrogenation strategies to boost efficiency over 20% for crystalline silicon solar cell with Al2O3/Cu2O passivating contact. Advanced Functional Materials, 2022, 32(43): 2207158 https://doi.org/10.1002/adfm.202207158
10
C Ballif , F J Haug , M Boccard , P J Verlinden , G Hahn . Status and perspectives of crystalline silicon photovoltaics in research and industry. Nature Reviews Materials, 2022, 7(8): 597–616 https://doi.org/10.1038/s41578-022-00423-2
11
Y Liu , Y Li , Y Wu , G Yang , L Mazzarella , P Procel-Moya , A C Tamboli , K Weber , M Boccard , O Isabella . et al.. High-efficiency silicon heterojunction solar cells: materials, devices and applications. Materials Science and Engineering R Reports, 2020, 142: 100579 https://doi.org/10.1016/j.mser.2020.100579
12
S Essig , J Dréon , E Rucavado , M Mews , T Koida , M Boccard , J Werner , J Geissbuhler , P Löper , M Morales-Masis . et al.. Toward annealing-stable molybdenum-oxide-based hole-selective contacts for silicon photovoltaics. Solar RRL, 2018, 2(4): 1700227 https://doi.org/10.1002/solr.201700227
13
L Li , G Du , Y Lin , X Zhou , Z Gu , L Lu , W Liu , J Huang , J Wang , L Yang . et al.. NiOx/MoOx bilayer as an efficient hole-selective contact in crystalline silicon solar cells. Cell Reports. Physical Science, 2021, 2(12): 100684 https://doi.org/10.1016/j.xcrp.2021.100684
14
A H T Le , J Dréon , J I Michel , M Boccard , J Bullock , N Borojevic , Z Hameiri . Temperature-dependent performance of silicon heterojunction solar cells with transition-metal-oxide-based selective contacts. Progress in Photovoltaics: Research and Applications, 2022, 30(8): 981–993 https://doi.org/10.1002/pip.3509
15
C Lu , A B Rusli , H Prakoso . Hole selective WOx and V2Ox contacts using solution process for silicon solar cells application. Materials Chemistry and Physics, 2021, 273: 125101 https://doi.org/10.1016/j.matchemphys.2021.125101
16
Z Liu , W Lin , Z Chen , D Chen , Y Chen , H Shen , Z Liang . Enhanced hole extraction of WOx/V2Ox dopant-free contact for p-type silicon solar cell. Advanced Materials Interfaces, 2022, 9(10): 2102374 https://doi.org/10.1002/admi.202102374
17
J Dréon , Q Jeangros , J Cattin , J Haschke , L Antognini , C Ballif , M Boccard . 23.5%-efficient silicon heterojunction silicon solar cell using molybdenum oxide as hole-selective contact. Nano Energy, 2020, 70: 104495 https://doi.org/10.1016/j.nanoen.2020.104495
18
X Yang , H Xu , W Liu , Q Bi , L Xu , J Kang , M N Hedhili , B Sun , X Zhang , S De Wolf . Atomic layer deposition of vanadium oxide as hole-selective contact for crystalline silicon solar cells. Advanced Electronic Materials, 2020, 6(8): 2000467 https://doi.org/10.1002/aelm.202000467
19
X Yang , W Liu , J Chen , Y Sun . On the annealing-induced enhancement of the interface properties of NiO:Cu/wet-SiOx/n-Si tunnelling junction solar cells. Applied Physics Letters, 2018, 112(17): 173904 https://doi.org/10.1063/1.5026135
20
F Wang , H Duan , X Li , S Yang , D Han , L Yang , L Fan , H Liu , J Yang , F Rosei . Gradient doped nickel oxide hole selective heterocontact and ultrathin passivation for silicon photovoltaics with efficiencies beyond 20%. Chemical Engineering Journal, 2022, 450: 138060 https://doi.org/10.1016/j.cej.2022.138060
21
Y Liu , J Zhu , L Cai , Z Yao , C Duan , Z Zhao , C Zhao , W Mai . Solution-processed high-quality Cu2O thin films as hole transport layers for pushing the conversion efficiency limit of Cu2O/Si heterojunction solar cells. Solar RRL, 2020, 4(1): 1900339 https://doi.org/10.1002/solr.201900339
22
L Pan , C Liu , H Zhu , M Wan , Y Li , Y Mai . Fine modification of reactively sputtered NiOx hole transport layer for application in all-inorganic CsPbI2Br perovskite solar cells. Solar Energy, 2020, 196: 521–529 https://doi.org/10.1016/j.solener.2019.12.056
23
M Du , S Zhao , L Duan , Y Cao , H Wang , Y Sun , L Wang , X Zhu , J Feng , L Liu . et al.. Surface redox engineering of vacuum-deposited NiOx for top-performance perovskite solar cells and modules. Joule, 2022, 6(8): 1931–1943 https://doi.org/10.1016/j.joule.2022.06.026
24
L Li , X Zhang , H Zeng , X Zheng , Y Zhao , Y Luo , F Liu , X Li . Thermally-stable and highly-efficient bi-layered NiOx-based inverted planar perovskite solar cells by employing a p-type organic semiconductor. Chemical Engineering Journal, 2022, 443: 136405 https://doi.org/10.1016/j.cej.2022.136405
25
D Chen , Z Liu , M Zhou , P Wu , J Wei . Enhanced photoelectrochemical water splitting performance of α-Fe2O3 nanostructures modified with Sb2S3 and cobalt phosphate. Journal of Alloys and Compounds, 2018, 742: 918–927 https://doi.org/10.1016/j.jallcom.2018.01.334
26
W Zhang , H Shen , M Yin , L Lu , B Xu , D Li . Heterostructure silicon solar cells with enhanced power conversion efficiency based on SiOx/Ni3+ self-doped NiOx passivating contact. ACS Omega, 2022, 7(19): 16494–16501 https://doi.org/10.1021/acsomega.2c00496
27
J Bertrandie , J Han , C S P De Castro , E Yengel , J Gorenflot , T Anthopoulos , F Laquai , A Sharma , D Baran . The energy level conundrum of organic semiconductors in solar cells. Advanced Materials, 2022, 34(35): 2202575 https://doi.org/10.1002/adma.202202575