Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2024, Vol. 18 Issue (6): 64   https://doi.org/10.1007/s11705-024-2423-3
  本期目录
Role of catalyst surface-active sites in the hydrogenation of α,β-unsaturated aldehyde
Haixiang Shi1, Tongming Su1, Zuzeng Qin1(), Hongbing Ji1,2()
1. School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China
2. Zhejiang Green Petrochemical and Light Hydrocarbon Transformation Research Institute, Zhejiang University of Technology, Hangzhou 310014, China
 全文: PDF(4632 KB)   HTML
Abstract

As an important technology in fine chemical production, the selective hydrogenation of α,β-unsaturated aldehydes has attracted much attention in recent years. In the process of α,β-unsaturated aldehyde hydrogenation, a conjugated system is formed between >C=C< and >C=O, leading to hydrogenation at both ends of the conjugated system, which competes with each other and results in more complex products. Therefore, improving the reaction selectivity is also difficult in industrial fields. Recently, many researchers have reported that surface-active sites on catalysts play a crucial role in α,β-unsaturated aldehyde hydrogenation. This review attempts to summarize recent advances in understanding the effects of surface-active sites (SASs) over metal catalysts for enhancing the process of hydrogenation. The construction strategies and roles of SASs for hydrogenation catalysts are summarized. Particular attention has been given to the adsorption configuration and transformation mechanism of α,β-unsaturated aldehydes on catalysts, which contributes to understanding the relationship between SASs and hydrogenation activity. In addition, recent advances in metal-supported catalysts for the selective hydrogenation of α,β-unsaturated aldehydes to understand the role of SASs in hydrogenation are briefly reviewed. Finally, the opportunities and challenges will be highlighted for the future development of the precise construction of SASs.

Key wordsα,β-unsaturated aldehydes    hydrogenation    active site    cinnamaldehyde
收稿日期: 2023-11-28      出版日期: 2024-05-20
Corresponding Author(s): Zuzeng Qin,Hongbing Ji   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2024, 18(6): 64.
Haixiang Shi, Tongming Su, Zuzeng Qin, Hongbing Ji. Role of catalyst surface-active sites in the hydrogenation of α,β-unsaturated aldehyde. Front. Chem. Sci. Eng., 2024, 18(6): 64.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-024-2423-3
https://academic.hep.com.cn/fcse/CN/Y2024/V18/I6/64
  
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
CatalystReaction conditionsX/%SUOL/%a)Ref.
T/KP/MPat/hSolvent
CAL
Pt/TiH23734.04.0Isopropanol98.097.0[81]
3-Pt/MOF-NH23331.03.0Isopropanol72.378.9[19]
Pt/BN (boron nitride)-R3002984.02.0Isopropanol + H2O96.885.2[23]
Pt@S-13331.04.0Methanol99.898.7[50]
Pt/FeOx/SBA-152983.00.5Isopropanol97.191.5[82]
Pt1–FeOx/SBA-152983.09.0Isopropanol95.2100.0[83]
Pt3/SiC–Ox3131.03.0Ethanol + H2O93.083.5[84]
2Pt-2Co/IL@SBA-153235.06.098.296.5[62]
Pt-Co/γ-Al2O33531.09.0Isopropanol95.281.2[28]
PtCo0.80@UiO-66-NH23432.01.0Isopropanol94.393.3[85]
3%Pt3%Co/MIL-101(Cr)3331.02Isopropanol95.091.0[86]
5Co-1Pt/MWCNTs (modified multiwalled carbon nanotubes)3531.012Isopropanol93.393.4[55]
PtCo3-oCNTs3531.51.01,4-Dioxane99.076.0[63]
Pt3Co@Co(OH)23430.52.0Ethanol99.690.0[64]
Pt/Co0.5Fe0.5Al2O4+δ3632.00.5Isopropanol94.295.0[87]
Pt-Co/PCT3530.23.0Ethanol100.096.0[88]
Pt–Fe/Fe-NTA3132.02.0Methanol90.890.9[66]
Pt–Fe/UiO-663732.04.0Ethyl acetate99.994.3[25]
Crotonaldehyde
Pt@ZIF-673433.01.0Ethanol41.054.0[89]
Pt@UiO-66-NH23433.018.0Isopropanol30.070.4[90]
Pt/UiO-664231.0(N2)16.0Isopropanol79.162.0[91]
PtCo5/SBA-153533.02.0Ethanol83.894.3[9]
Pt/Co3O4@6 wt %PDA3432.01.0Ethanol41.665.3[92]
Co/Pt/LOC3431.51.0Ethanol89.442.9[93]
Citral
Pt/TiO23630.83.0Heptane85.078.0[94]
[Pt/CN-FC]-N270034301.7Isopropanol95.091.1[95]
[PtSn(1%)/CNP]-N234305.0Isopropanol95.098.0[96]
PtSn0.5/SiO23731.34.0Isopropanol100.061.0[97]
Sn–Pt/NW34303.02-Pentanol95.066.0[98]
Pt–Fe/MWCNTs3532.03.0Isopropanol67.190.7[68]
Furfural
Pt/BN-U10-123531.03.0Isopropanol94.296.3[99]
Pt/WN-TiO23231.02.0Isopropanol97.898.6[100]
Pt/HT3031.52.0H2O99.999.0[101]
Pt/HPC3082.02.0Isopropanol71.076.0[102]
Pt/M-CeO23531.01.5Isopropanol100.098.0[103]
Pt–Fe/MWNT3733.05.0Ethanol95.291.8[104]
Pt3–(CoOx)1/SiO23181.03.0Ethanol97.099.2[105]
Ga2O3/Pt@TD3831.02.0Isopropanol82.596.5[106]
Pt/CeO2-2703531.01.0Isopropanol100.097.3[107]
Pt@3D-NHPC-H2O23332.02.0H2O91.493.7[108]
np-PtCo/TiO23031.05.0Isopropanol99.999.9[109]
Tab.1  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
CatalystReaction conditionsX/%SSAL/%a)Ref.
T/KP/MPat/hSolvent
CAL
Pd/MoO3353?0.37Toluene90.085.0[118]
Pd/C3234.00.5THF55.078.0[119]
Pd@SG-ZSM-54231.02.0Isopropanol59.073.0[16]
Pd/NRGO5003632.01.0Cyclohexane98.096.0[120]
Pd/γ-Al2O33532.06.0Para-xylene100.092.2[15]
0.2%Pd–1.2%Ni/SBA-153531.22.0Isopropanol96.387.8[11]
Pd3Co950@CN3230.51.5Water93.699.0[121]
Pd1.7Co-2.3/NC3230.3455.0Cyclohexane75.088.0[122]
CeO2/Pd@MIL-53(Al)2986.04.0Octanol98.499.9[123]
Pd3/NiCo2O4?x3031.02.2Methanol99.999.9[124]
PdSn/SiO23030.812.0Toluene83.096.0b)[71]
Pd0.5Au0.53230.524.0THF86.096.0[125]
Crotonaldehyde
Pd/CN3030.10.5Ethanol> 99.0> 99.0[126]
Pd1Cu2343230.157.0Methanol99.384.3[79]
PdSn/SiO23030.812.0H2O95.095.8b)[71]
Pd(0)-TPA/ZrO23531.04.0H2O89.0100.0[127]
Pd/PEG400029804.0Ethanol100.0100.0b)[128]
Citral
Pd/CN3030.14.0Ethanol> 99.0> 99.0[126]
Pd/C/TiO23533.024.0Isopropanol90.084.0[129]
3%Ni–1.5%Pd/Fe2O3HT3450.641.4Isopropanol99.097.2b)[73]
PdNi-67/C3731.01.0Isopropanol88.083.0[130]
Furfural
0.5Pd/TiH23332.01.0Isopropanol88.379.6b)[131]
1.7%Pd/AC3633.42.0H2O68.073.0b)[132]
Pd/Co3O4-64232.00.3H2O67.088.0b)[65]
Pd–Cu/MCM-414330.54.0Isopropanol97.498.3b)[133]
Pd/Ni/Ni(OH)2/C2835.01.0Ethanol81.592.4b)[134]
Tab.2  
Fig.12  
Fig.13  
CatalystReaction conditionsX/%SSAL/%a)Ref.
T/KP/MPat/hSolvent
CAL
Ni4/La2O33632.02.0Ethanol88.187.4[136]
Ni/CeO2-R4032.08.0Ethanol9693[137]
Ni1/TiO2 SACs4033.02.0Isopropanol9890[138]
Ni(0)/Ni-N-CNT3732.012.0Ethanol98.687.5[139]
Ni(0)/Ni-N-CNS3732.06.0Ethanol100.096.8[139]
Ni/SiO2@N7C3732.02.0Ethanol98.983.1[140]
Ni/La2O33632.00.25Isopropanol80.890.2[141]
Ni/COFs3531.02.0Water98.090.0[142]
Ni-C-6003932.06.0Isopropanol96.292.5[143]
Ni@OCNT3931.316.0Isopropanol96.093.0[144]
NiS-4504231(N2)2.0Isopropanol100.099.0b)[145]
Ni–Cu@RGO4232.06.0Methanol82.0100.0[10]
Ni–Ti-bentonite3932.01.0Methanol98.895.0[146]
NiBi/Al2O33732.08.0Isopropanol94.398.9b)[147]
NiIn0.2/MgO-Al2O33732.02.0Isopropanol77.184.2b)[26]
Crotonaldehyde
NiBi/Al2O33732.03.0Isopropanol100.097.2[147]
Ni2ln3/7MgO4183.02.0Isopropanol47.095.0[74]
Ni@MOF-53732.00.67Ethanol91.698.3[148]
NiC33631.53.0Ethyl acetate40.0> 99.0[149]
Ni@Zn-MOCP3732.02.0Ethanol83.796.7[150]
Citral
12Ni-HT-5303530.481.5Isopropanol90.085.0[151]
Ni–ZnO(2)/C4131.07.0Isopropanol100.092.3[152]
Ni-MWNTs3531.02.0Ethanol72.786.9[153]
Furfural
NiBi/Al2O33732.03.0Isopropanol100.097.7b)[147]
Ni/TiO2-A23232.02.0Methanol65.766.7b)[154]
NiCu0.33/C3931.512.0Ethanol96.793.8b)[155]
Ni–Fe(2)HT-5734231.00.5Isopropanol90.092.0b)[156]
Ni–Fe(2)/Al2O3HT-5734231.00.5Isopropanol95.097.0b)[156]
Ni/MMO-NO33833.03.0Isopropanol99.097.0b)[157]
Ni/TiO2-3503732.04.0H2O80.396.1[158]
Ni@C3933.0(N2)3.0Isopropanol80.0100.0b)[159]
Ni@C3933.03.0Isopropanol100.090.0c)[159]
Tab.3  
Fig.14  
Fig.15  
Fig.16  
CatalystReaction conditionsX/%SUOL/%a)Ref.
T/KP/MPat/hSolvent
CAL
ε-CoNP/Gox3932.04.0Ethanol53.795.0[161]
Co@BN/BN-6003930.49.0Ethanol70.983.2[162]
Co/p-BN-5003930.49.0Ethanol95.278.5[22]
Co@NPC3530.52.0Water92.179.7[163]
Co–CoO@SiO23434.08.0Cyclohexane60.065.0[164]
ZIF-67-@SiO2-CPTEOS4531(N2)12.0Isopropanol84.695.0[165]
ZIF-CoZn(1:1)4531.012.0Isopropanol57.396.8[165]
CoB-F-EG3731.04.0Ethanol95.085.0[166]
Co–B3731.01.0Ethanol97.086.0[167]
Co-B-200 NWs3731.03.5Ethanol100.096.9[168]
1Cu4Co/SBA-154030.124.0Isopropanol99.672.2[78]
Fe0.5Co@NC3532.05.0Water95.191.7[13]
Co–Fe-1%Zn-B4032.01.0Ethanol97.7100.0[12]
Crotonaldehyde
CoFeB-33731.016.0Ethanol95.067.0[169]
Co/Al2O33231.02.0Ethanol83.675.9[170]
Citral
27.3Co(5)-ME-I-1.53637.01.0Isopropanol99.088.0[171]
SR-5Co-5Re3437.50.5Isopropanol98.052.0[172]
CoSn4134.012.0Isopropanol100.067.0[173]
Co@CoxN@C3732.01.5Ethanol89.061.0[174]
Furfural
CoOx/Nb2O5-ctr3432.04.0H2O99.595.7[175]
Co@C-T5503531.03.0Ethanol> 95.0> 95,0[176]
nano-Co2P/Al2O34034.04.0H2O> 99.0> 99.0[177]
Co-N-C-7004230.5(N2)6.01,4-Dioxane100.099.9[178]
Co@CPNs-1.5-1.5-44533.02.5Isopropanol99.099.0[179]
Co@NCNTs-600-8004034.05.0H2O95.095.0[180]
NiCoZn@CN-6004032.08.0Isopropanol10099.0[181]
Tab.4  
Fig.17  
Fig.18  
Fig.19  
Fig.20  
1 P Mäki-Arvela , J Hájek , T Salmi , D Y Murzin . Chemoselective hydrogenation of carbonyl compounds over heterogeneous catalysts. Applied Catalysis A: General, 2005, 292: 1–49
https://doi.org/10.1016/j.apcata.2005.05.045
2 A Stolle , T Gallert , C Schmöger , B Ondruschka . Hydrogenation of citral: a wide-spread model reaction for selective reduction of α,β-unsaturated aldehydes. RSC Advances, 2013, 3(7): 2112–2153
https://doi.org/10.1039/C2RA21498A
3 P Gallezot , D Richard . Selective hydrogenation of α,β-unsaturated aldehydes. Catalysis Reviews. Science and Engineering, 1998, 40(1–2): 81–126
https://doi.org/10.1080/01614949808007106
4 S Laref , F Delbecq , D Loffreda . Theoretical elucidation of the selectivity changes for the hydrogenation of unsaturated aldehydes on Pt (111). Journal of Catalysis, 2009, 265(1): 35–42
https://doi.org/10.1016/j.jcat.2009.04.010
5 E Bailón-García , F Maldonado-Hódar , A Pérez-Cadenas , F Carrasco-Marín . Catalysts supported on carbon materials for the selective hydrogenation of citral. Catalysts, 2013, 3(4): 853–877
https://doi.org/10.3390/catal3040853
6 X Wang , X Liang , P Geng , Q Li . Recent advances in selective hydrogenation of cinnamaldehyde over supported metal-based catalysts. ACS Catalysis, 2020, 10(4): 2395–2412
https://doi.org/10.1021/acscatal.9b05031
7 M Luneau , J S Lim , D A Patel , E C H Sykes , C M Friend , P Sautet . Guidelines to achieving high selectivity for the hydrogenation of α,β-unsaturated aldehydes with bimetallic and dilute alloy catalysts: a review. Chemical Reviews, 2020, 120(23): 12834–12872
https://doi.org/10.1021/acs.chemrev.0c00582
8 F Delbecq . Influence of Sn additives on the selectivity of hydrogenation of α-β-unsaturated aldehydes with Pt catalysts: a density functional study of molecular adsorption. Journal of Catalysis, 2003, 220(1): 115–126
https://doi.org/10.1016/S0021-9517(03)00249-5
9 X Li , S Zhang , L Zhu , J Liu , H Zhang , N Zhao , B H Chen . Ptmx/SBA-15 (m = Co, Cu, Ni and Zn) bimetallic catalysts for crotonaldehyde selective hydrogenation. Materials Chemistry and Physics, 2023, 294: 127003
https://doi.org/10.1016/j.matchemphys.2022.127003
10 S S Mohire , G D Yadav . Selective synthesis of hydrocinnamaldehyde over bimetallic Ni–Cu nanocatalyst supported on graphene oxide. Industrial & Engineering Chemistry Research, 2018, 57(28): 9083–9093
https://doi.org/10.1021/acs.iecr.8b00957
11 S Han , Y Liu , J Li , R Li , F Yuan , Y Zhu . Improvement effect of Ni to Pd-Ni/SBA-15 catalyst for selective hydrogenation of cinnamaldehyde to hydrocinnamaldehyde. Catalysts, 2018, 8(5): 200
https://doi.org/10.3390/catal8050200
12 A Jia , X Yao , L Feng , Z Ma , F Li , Y Wang . Synthesis of hierarchically porous amorphous alloy hollow sphere with high surface area as effective and selective catalysts for cinnamaldehyde hydrogenation. European Journal of Inorganic Chemistry, 2020, 2020(13): 1184–1191
https://doi.org/10.1002/ejic.201901246
13 Y Lv , M Han , W Gong , D Wang , C Chen , G Wang , H Zhang , H Zhao . Fe–Co alloyed nanoparticles catalyzing efficient hydrogenation of cinnamaldehyde to cinnamyl alcohol in water. Angewandte Chemie International Edition, 2020, 59(52): 23521–23526
https://doi.org/10.1002/anie.202009913
14 H RojasG DíazJ J MartínezC CastañedaA Gómez-CortésJ Arenas-Alatorre. Hydrogenation of α,β-unsaturated carbonyl compounds over Au and Ir supported on SiO2. Journal of Molecular Catalysis A Chemical, 2012, 363–364: 122–128
15 F Jiang , J Cai , B Liu , Y Xu , X Liu . Particle size effects in the selective hydrogenation of cinnamaldehyde over supported palladium catalysts. RSC Advances, 2016, 6(79): 75541–75551
https://doi.org/10.1039/C6RA17000E
16 L Alfilfil , J Ran , C Chen , X Dong , J Wang , Y Han . Highly dispersed Pd nanoparticles confined in ZSM-5 zeolite crystals for selective hydrogenation of cinnamaldehyde. Microporous and Mesoporous Materials, 2022, 330: 111566
https://doi.org/10.1016/j.micromeso.2021.111566
17 A Das , S Mondal , K M Hansda , M K Adak , D Dhak . A critical review on the role of carbon supports of metal catalysts for selective catalytic hydrogenation of chloronitrobenzenes. Applied Catalysis A: General, 2023, 649: 118955
https://doi.org/10.1016/j.apcata.2022.118955
18 Z Chen , J Chen , Y Li . Metal-organic-framework-based catalysts for hydrogenation reactions. Chinese Journal of Catalysis, 2017, 38(7): 1108–1126
https://doi.org/10.1016/S1872-2067(17)62852-3
19 M Zahid , A Ismail , M Sohail , Y Zhu . Improving selective hydrogenation of carbonyls bond in α,β-unsaturated aldehydes over Pt nanoparticles encaged within the amines-functionalized MIL-101-NH2. Journal of Colloid and Interface Science, 2022, 628: 141–152
https://doi.org/10.1016/j.jcis.2022.08.067
20 C Miao , F Zhang , L Cai , T Hui , J Feng , D Li . Identification and insight into the role of ultrathin LDH-induced dual-interface sites for selective cinnamaldehyde hydrogenation. ChemCatChem, 2021, 13(23): 4937–4947
https://doi.org/10.1002/cctc.202101258
21 J Zhang , M Gao , P Zhu , Y Wang , R Wang , Z Zheng . Photocatalytic selective hydrogenation of α,β-unsaturated aldehydes over oxygen vacancies enriched layered double hydroxide supported Co3O4 nanoparticles photocatalyst. Fuel, 2022, 330: 125589
https://doi.org/10.1016/j.fuel.2022.125589
22 R Zhang , L Wang , X Yang , Z Tao , X Ren , B Lv . The role of surface N-H groups on the selective hydrogenation of cinnamaldehyde over Co/BN catalysts. Applied Surface Science, 2019, 492: 736–745
https://doi.org/10.1016/j.apsusc.2019.06.269
23 Z Cao , J Bu , Z Zhong , C Sun , Q Zhang , J Wang , S Chen , X Xie . Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol over BN-supported Pt catalysts at room temperature. Applied Catalysis A: General, 2019, 578: 105–115
https://doi.org/10.1016/j.apcata.2019.04.006
24 J Zhang , Z Gao , S Wang , G Wang , X Gao , B Zhang , S Xing , S Zhao , Y Qin . Origin of synergistic effects in bicomponent cobalt oxide-platinum catalysts for selective hydrogenation reaction. Nature Communications, 2019, 10(1): 4166
https://doi.org/10.1038/s41467-019-11970-8
25 L Ning , M Zhang , S Liao , Y Zhang , D Jia , Y Yan , W Gu , X Liu . Differentiation of Pt–Fe and Pt–Ni3 surface catalytic mechanisms towards contrasting products in chemoselective hydrogenation of α,β-unsaturated aldehydes. ChemCatChem, 2021, 13(2): 704–711
https://doi.org/10.1002/cctc.202001482
26 K Yang , Y Li , R Wang , Q Li , B Huang , X Guo , Z Zhu , T Su , H Lü . Synthesis of dual-active-sites Ni–Ni2In catalysts for selective hydrogenation of furfural to furfuryl alcohol. Fuel, 2022, 325: 124898
https://doi.org/10.1016/j.fuel.2022.124898
27 S Zhang , Z Xia , M Zhang , Y Zou , H Shen , J Li , X Chen , Y Qu . Boosting selective hydrogenation through hydrogen spillover on supported-metal catalysts at room temperature. Applied Catalysis B: Environmental, 2021, 297: 120418
https://doi.org/10.1016/j.apcatb.2021.120418
28 K Wang , X He , J C Wang , X Liang . Highly stable Pt-Co bimetallic catalysts prepared by atomic layer deposition for selective hydrogenation of cinnamaldehyde. Nanotechnology, 2022, 33(21): 215602
https://doi.org/10.1088/1361-6528/ac5540
29 J Kardos , V Harmat , A Palló , O Barabás , K Szilágyi , L Gráf , G Náray-Szabó , Y Goto , P Závodszky , P Gál . Revisiting the mechanism of the autoactivation of the complement protease C1r in the C1 complex: structure of the active catalytic region of C1r. Molecular Immunology, 2008, 45(6): 1752–1760
https://doi.org/10.1016/j.molimm.2007.09.031
30 Y Shi , Y Zhou , Y Lou , Z Chen , H Xiong , Y Zhu . Homogeneity of supported single-atom active sites boosting the selective catalytic transformations. Advanced Science, 2022, 9(24): 2201520
https://doi.org/10.1002/advs.202201520
31 E Xu , H Feng , L Wang , Y Zhang , K Liu , S Cui , H Meng , G Wang , Y Yang . Pt single atoms and nanosized clusters as catalytic reaction platforms for selective hydrogenation applications. ACS Applied Nano Materials, 2023, 6(16): 14991–15001
https://doi.org/10.1021/acsanm.3c02543
32 W Guo , Z Wang , X Wang , Y Wu . General design concept for single-atom catalysts toward heterogeneous catalysis. Advanced Materials, 2021, 33(34): 2004287
https://doi.org/10.1002/adma.202004287
33 L Zhang , M Zhou , A Wang , T Zhang . Selective hydrogenation over supported metal catalysts: from nanoparticles to single atoms. Chemical Reviews, 2020, 120(2): 683–733
https://doi.org/10.1021/acs.chemrev.9b00230
34 X Lan , T Wang . Highly selective catalysts for the hydrogenation of unsaturated aldehydes: a review. ACS Catalysis, 2020, 10(4): 2764–2790
https://doi.org/10.1021/acscatal.9b04331
35 C G Santana , M J Krische . From hydrogenation to transfer hydrogenation to hydrogen auto-transfer in enantioselective metal-catalyzed carbonyl reductive coupling: past, present, and future. ACS Catalysis, 2021, 11(9): 5572–5585
https://doi.org/10.1021/acscatal.1c01109
36 H Xin , W Zhang , X Xiao , L Chen , P Wu , X Li . Selective hydrogenation of cinnamaldehyde with NixFe1–xAl2O4+δ composite oxides supported Pt catalysts: C=O versus C=C selectivity switch by varying the Ni/Fe molar ratios. Journal of Catalysis, 2021, 393: 126–139
https://doi.org/10.1016/j.jcat.2020.11.036
37 F F Wang , R Guo , C P Jian , W Zhang , R F Xue , D L Chen , F M Zhang , W D Zhu . Mechanism of catalytic transfer hydrogenation for furfural using single Ni atom catalysts anchored to nitrogen-doped graphene sheets. Inorganic Chemistry, 2022, 61(24): 9138–9146
https://doi.org/10.1021/acs.inorgchem.2c00670
38 X Lan , K Xue , T Wang . Combined synergetic and steric effects for highly selective hydrogenation of unsaturated aldehyde. Journal of Catalysis, 2019, 372: 49–60
https://doi.org/10.1016/j.jcat.2019.02.022
39 W Lin , H Cheng , X Li , C Zhang , F Zhao , M Arai . Layered double hydroxide-like Mg3Al1–xFex materials as supports for ir catalysts: promotional effects of Fe doping in selective hydrogenation of cinnamaldehyde. Chinese Journal of Catalysis, 2018, 39(5): 988–996
https://doi.org/10.1016/S1872-2067(18)63042-6
40 Y Dai , X Chu , J Gu , X Gao , M Xu , D Lu , X Wan , W Qi , B Zhang , Y Yang . Water-enhanced selective hydrogenation of cinnamaldehyde to cinnamyl alcohol on RuSnB/CeO2 catalysts. Applied Catalysis A: General, 2019, 582: 117098
https://doi.org/10.1016/j.apcata.2019.05.032
41 la Peña O’Shea V A de , I P R Moreira , A Roldán , F Illas . Electronic and magnetic structure of bulk cobalt: the α, β, and ε-phases from density functional theory calculations. Journal of Chemical Physics, 2010, 133(2): 024701
https://doi.org/10.1063/1.3458691
42 H Hu , J Xi . Single-atom catalysis for organic reactions. Chinese Chemical Letters, 2023, 34(6): 107959
https://doi.org/10.1016/j.cclet.2022.107959
43 Y Ren , Y Yang , M Wei . Recent advances on heterogeneous non-noble metal catalysts toward selective hydrogenation reactions. ACS Catalysis, 2023, 13(13): 8902–8924
https://doi.org/10.1021/acscatal.3c01442
44 X Zhao , Y Chang , W Chen , Q Wu , X Pan , K Chen , B Weng . Recent progress in Pd-based nanocatalysts for selective hydrogenation. ACS Omega, 2022, 7(1): 17–31
https://doi.org/10.1021/acsomega.1c06244
45 R Gao , L Pan , H Wang , Y Yao , X Zhang , L Wang , J J Zou . Breaking trade-off between selectivity and activity of nickel-based hydrogenation catalysts by tuning both steric effect and d-band center. Advanced Science, 2019, 6(10): 1900054
https://doi.org/10.1002/advs.201900054
46 S Song , X Liu , J Li , J Pan , F Wang , Y Xing , X Wang , X Liu , H Zhang . Confining the nucleation of Pt to in situ form (Pt-enriched cage)@CeO2 core@shell nanostructure as excellent catalysts for hydrogenation reactions. Advanced Materials, 2017, 29(28): 1700495
https://doi.org/10.1002/adma.201700495
47 Y Long , S Song , J Li , L Wu , Q Wang , Y Liu , R Jin , H Zhang . Pt/CeO2@MOF core@shell nanoreactor for selective hydrogenation of furfural via the channel screening effect. ACS Catalysis, 2018, 8(9): 8506–8512
https://doi.org/10.1021/acscatal.8b01851
48 Q Hu , S Wang , Z Gao , Y Li , Q Zhang , Q Xiang , Y Qin . The precise decoration of Pt nanoparticles with Fe oxide by atomic layer deposition for the selective hydrogenation of cinnamaldehyde. Applied Catalysis B: Environmental, 2017, 218: 591–599
https://doi.org/10.1016/j.apcatb.2017.06.087
49 S Padmanaban , Y Lee , S Yoon . Chemoselective hydrogenation of α,β-unsaturated carbonyl compounds using a recyclable Ru catalyst embedded on a bisphosphine based POP. Journal of Industrial and Engineering Chemistry, 2021, 94: 361–367
https://doi.org/10.1016/j.jiec.2020.11.007
50 C Liu , P Zhu , J Wang , H Liu , X Zhang . Geometrically embedding dispersive Pt nanoparticles within silicalite-1 framework for highly selective ɑ,β-unsaturated aldehydes hydrogenation via oriented C=O adsorption configuration. Chemical Engineering Journal, 2022, 446: 137064
https://doi.org/10.1016/j.cej.2022.137064
51 B Chen , X Yang , Y Xu , S Hu , X Zeng , Y Liu , K B Tan , J Huang , G Zhan . Semi-hydrogenation of α,β-unsaturated aldehydes over sandwich-structured nanocatalysts prepared by phase transformation of thin-film Al2O3 to Al-TCPP. Nanoscale, 2022, 14(42): 15749–15759
https://doi.org/10.1039/D2NR04474A
52 A K Prashar , S Mayadevi , R Nandini Devi . Effect of particle size on selective hydrogenation of cinnamaldehyde by Pt encapsulated in mesoporous silica. Catalysis Communications, 2012, 28: 42–46
https://doi.org/10.1016/j.catcom.2012.08.017
53 M G Prakash , R Mahalakshmy , K R Krishnamurthy , B Viswanathan . Selective hydrogenation of cinnamaldehyde on nickel nanoparticles supported on titania: role of catalyst preparation methods. Catalysis Science & Technology, 2015, 5(6): 3313–3321
https://doi.org/10.1039/C4CY01379D
54 W Zhu , C Chen . Reaction: open up the era of atomically precise catalysis. Chem, 2019, 5(11): 2737–2739
https://doi.org/10.1016/j.chempr.2019.10.005
55 X Wang , Y He , Y Liu , J Park , X Liang . Atomic layer deposited Pt–Co bimetallic catalysts for selective hydrogenation of α,β-unsaturated aldehydes to unsaturated alcohols. Journal of Catalysis, 2018, 366: 61–69
https://doi.org/10.1016/j.jcat.2018.07.031
56 Z Weng , F Zaera . Atomic layer deposition (ALD) as a way to prepare new mixed-oxide catalyst supports: the case of alumina addition to silica-supported platinum for the selective hydrogenation of cinnamaldehyde. Topics in Catalysis, 2019, 62(12–16): 838–848
https://doi.org/10.1007/s11244-019-01163-4
57 J Li , Q Guan , H Wu , W Liu , Y Lin , Z Sun , X Ye , X Zheng , H Pan , J Zhu . et al.. Highly active and stable metal single-atom catalysts achieved by strong electronic metal-support interactions. Journal of the American Chemical Society, 2019, 141(37): 14515–14519
https://doi.org/10.1021/jacs.9b06482
58 B Qiao , J Liu , Y Wang , Q Lin , X Liu , A Wang , J Li , T Zhang , J Liu . Highly efficient catalysis of preferential oxidation of CO in H2-rich stream by gold single-atom catalysts. ACS Catalysis, 2015, 5(11): 6249–6254
https://doi.org/10.1021/acscatal.5b01114
59 H Wei , X Liu , A Wang , L Zhang , B Qiao , X Yang , Y Huang , S Miao , J Liu , T Zhang . FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nature Communications, 2014, 5(1): 5634
https://doi.org/10.1038/ncomms6634
60 H Yang , L Shang , Q Zhang , R Shi , G I N Waterhouse , L Gu , T Zhang . A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts. Nature Communications, 2019, 10(1): 4585
https://doi.org/10.1038/s41467-019-12510-0
61 Z Zhang , C Feng , C Liu , M Zuo , L Qin , X Yan , Y Xing , H Li , R Si , S Zhou . et al.. Electrochemical deposition as a universal route for fabricating single-atom catalysts. Nature Communications, 2020, 11(1): 1215
https://doi.org/10.1038/s41467-020-14917-6
62 E N Kusumawati , T Sasaki , M Shirai . Highly active Pt-Co bimetallic nanoparticles on ionic liquid-modified SBA-15 for solvent-free selective hydrogenation of cinnamaldehyde. ACS Applied Nano Materials, 2023, 6(19): 17913–17923
https://doi.org/10.1021/acsanm.3c03212
63 J Su , W Shi , X Liu , L Zhang , S Cheng , Y Zhang , G A Botton , B Zhang . Probing the performance of structurally controlled platinum-cobalt bimetallic catalysts for selective hydrogenation of cinnamaldehyde. Journal of Catalysis, 2020, 388: 164–170
https://doi.org/10.1016/j.jcat.2020.05.015
64 H Wang , S Bai , Y Pi , Q Shao , Y Tan , X Huang . A strongly coupled ultrasmall Pt3Co nanoparticle-ultrathin Co(OH)2 nanosheet architecture enhances selective hydrogenation of α,β-unsaturated aldehydes. ACS Catalysis, 2019, 9(1): 154–159
https://doi.org/10.1021/acscatal.8b03471
65 E Yuan , C Wang , C Wu , G Shi , P Jian , X Hou . Constructing a Pd–Co interface to tailor a d-band center for highly efficient hydroconversion of furfural over cobalt oxide-supported Pd catalysts. ACS Applied Materials & Interfaces, 2023, 15(37): 43845–43858
https://doi.org/10.1021/acsami.3c09234
66 H Li , K Cui , Y Lei , J Chen , Y Li , D Liu , W Xiong . Enhanced chemoselective hydrogenation of cinnamaldehyde via Pt–Fe/Fe-NTA nanocatalysts under low temperature. Catalysis Letters, 2023, 153(9): 2571–2580
https://doi.org/10.1007/s10562-022-04200-2
67 X Gao , S Tian , Y Jin , X Wan , C Zhou , R Chen , Y Dai , Y Yang . Bimetallic PtFe-catalyzed selective hydrogenation of furfural to furfuryl alcohol: solvent effect of isopropanol and hydrogen activation. ACS Sustainable Chemistry & Engineering, 2020, 8(33): 12722–12730
https://doi.org/10.1021/acssuschemeng.0c04891
68 P F Qu , J G Chen , Y H Song , Z T Liu , Z W Liu , Y Li , J Lu , J Q Jiang . Effect of Fe(III) on hydrogenation of citral over Pt supported multiwalled carbon nanotube. Catalysis Communications, 2015, 68: 105–109
https://doi.org/10.1016/j.catcom.2015.05.001
69 X Chen , H Cao , X Chen , Y Du , J Qi , J Luo , M Armbruster , C Liang . Synthesis of intermetallic Pt-based catalysts by lithium naphthalenide-driven reduction for selective hydrogenation of cinnamaldehyde. ACS Applied Materials & Interfaces, 2020, 12(16): 18551–18561
https://doi.org/10.1021/acsami.0c01987
70 Y Yang , D Rao , Y Chen , S Dong , B Wang , X Zhang , M Wei . Selective hydrogenation of cinnamaldehyde over Co-based intermetallic compounds derived from layered double hydroxides. ACS Catalysis, 2018, 8(12): 11749–11760
https://doi.org/10.1021/acscatal.8b02755
71 M Chen , Y Yan , M Gebre , C Ordonez , F Liu , L Qi , A Lamkins , D Jing , K Dolge , B Zhang . et al.. Thermal unequilibrium of PdSn intermetallic nanocatalysts: from in situ tailored synthesis to unexpected hydrogenation selectivity. Angewandte Chemie International Edition, 2021, 60(33): 18309–18317
https://doi.org/10.1002/anie.202106515
72 Y Meng , S Xia , X Zhou , G Pan . Mechanism of selective hydrogenation of cinnamaldehyde on Ni–Pt (111) with different structures: a comparative study. Chemical Physics Letters, 2020, 740: 137049
https://doi.org/10.1016/j.cplett.2019.137049
73 P Kumar , P K Sharma , A D Nannaware , C S Chanotiya , P Mohapatra , P K Rout . Regulating the catalytic activities of Ni and Pd through doping on Fe2O3HT for selective hydrogenation of conjugated aldehyde (citral) in lemongrass essential oil to organoleptically superior monoterpene alcohols (geraniol/nerol). Applied Catalysis A: General, 2023, 661: 119236
https://doi.org/10.1016/j.apcata.2023.119236
74 C Li , Y Chen , S Zhang , S Xu , J Zhou , F Wang , M Wei , D G Evans , X Duan . Ni–In intermetallic nanocrystals as efficient catalysts toward unsaturated aldehydes hydrogenation. Chemistry of Materials, 2013, 25(19): 3888–3896
https://doi.org/10.1021/cm4021832
75 M D Rodiansono , D R Astuti , U T Mujiyanti , S Santoso . Novel preparation method of bimetallic Ni–In alloy catalysts supported on amorphous alumina for the highly selective hydrogenation of furfural. Molecular Catalysis, 2018, 445: 52–60
https://doi.org/10.1016/j.mcat.2017.11.004
76 J P Stassi , P D Zgolicz , V I Rodríguez , Miguel S R De , O A Scelza . Ga and In promoters in bimetallic Pt based catalysts to improve the performance in the selective hydrogenation of citral. Applied Catalysis A: General, 2015, 497: 58–71
https://doi.org/10.1016/j.apcata.2015.01.046
77 Y Cao , B Chen , J Guerrero-Sánchez , I Lee , X Zhou , N Takeuchi , F Zaera . Controlling selectivity in unsaturated aldehyde hydrogenation using single-site alloy catalysts. ACS Catalysis, 2019, 9(10): 9150–9157
https://doi.org/10.1021/acscatal.9b02547
78 C Ciotonea , A Chirieac , B Dragoi , J Dhainaut , M Marinova , S Pronier , S Arii-Clacens , J P Dacquin , E Dumitriu , A Ungureanu . et al.. Playing on 3d spatial distribution of Cu–Co (oxide) nanoparticles in inorganic mesoporous sieves: impact on catalytic performance toward the cinnamaldehyde hydrogenation. Applied Catalysis A: General, 2021, 623: 118303
https://doi.org/10.1016/j.apcata.2021.118303
79 M J Islam , M Granollers Mesa , A Osatiashtiani , M J Taylor , M A Isaacs , G Kyriakou . The hydrogenation of crotonaldehyde on PdCu single atom alloy catalysts. Nanomaterials, 2023, 13(8): 1434
https://doi.org/10.3390/nano13081434
80 B H Wu , H Q Huang , J Yang , N F Zheng , G Fu . Selective hydrogenation of α,β‐unsaturated aldehydes catalyzed by amine-capped platinum-cobalt nanocrystals. Angewandte Chemie International Edition, 2012, 51(14): 3440–3443
https://doi.org/10.1002/anie.201108593
81 Q Wu , C Zhang , M Arai , B Zhang , R Shi , P Wu , Z Wang , Q Liu , K Liu , W Lin . et al.. Pt/TiH2 catalyst for ionic hydrogenation via stored hydrides in the presence of gaseous H2. ACS Catalysis, 2019, 9(7): 6425–6434
https://doi.org/10.1021/acscatal.9b00917
82 Y Liang , M Douthwaite , X Huang , B Zhao , Q Tang , L Liu , J Dong . Zero-oxidation state precursor assisted fabrication of highly dispersed and stable Pt catalyst for chemoselective hydrogenation of α,β-unsaturated aldehydes. Nano Research, 2023, 16(5): 6085–6093
https://doi.org/10.1007/s12274-022-4822-4
83 Y Liang , Q Tang , L Liu , D Wang , J Dong . Fabrication of highly oxidized Pt single-atom catalysts to suppress the deep hydrogenation of unsaturated aldehydes. Applied Catalysis B: Environmental, 2023, 333: 122783
https://doi.org/10.1016/j.apcatb.2023.122783
84 L Li , Z F Jiao , J X Zhao , D Yao , X Li , X Y Guo . Boosting the selectivity of Pt catalysts for cinnamaldehyde hydrogenation to cinnamylalcohol by surface oxidation of SiC support. Journal of Catalysis, 2023, 425: 314–321
https://doi.org/10.1016/j.jcat.2023.06.018
85 H Shen , H Zhao , J Yang , J Zhao , L Yan , L Chou , H Song . A facile strategy for incorporation of PtCo alloy into UiO-66-NH2 for cinnamaldehyde hydrogenation. Catalysis Communications, 2023, 181: 106714
https://doi.org/10.1016/j.catcom.2023.106714
86 M Zahid , J Li , A Ismail , F Zaera , Y Zhu . Platinum and cobalt intermetallic nanoparticles confined within MIL-101(Cr) for enhanced selective hydrogenation of the carbonyl bond in α,β-unsaturated aldehydes: synergistic effects of electronically modified Pt sites and lewis acid sites. Catalysis Science & Technology, 2021, 11(7): 2433–2445
https://doi.org/10.1039/D0CY02082F
87 H Xin , Y Xue , W Zhang , P Wu , X Li . CoxFe1–xAl2O4+δ composite oxides supported Pt nanoparticles as efficient and recyclable catalysts for the liquid-phase selective hydrogenation of cinnamaldehyde. Journal of Catalysis, 2019, 380: 254–266
https://doi.org/10.1016/j.jcat.2019.09.042
88 Z Gu , L Chen , X Li , L Chen , Y Zhang , C Duan . NH2-MIL-125(Ti)-derived porous cages of titanium oxides to support Pt-Co alloys for chemoselective hydrogenation reactions. Chemical Science, 2019, 10(7): 2111–2117
https://doi.org/10.1039/C8SC05450A
89 H Shen , H Zhao , J Yang , J Zhao , L Yan , L Chou , H Song . The structure and electronic effects of ZIF-8 and ZIF-67 supported Pt catalysts for crotonaldehyde selective hydrogenation. New Journal of Chemistry, 2022, 46(7): 3095–3105
https://doi.org/10.1039/D1NJ05487B
90 W S Lo , L Y Chou , A P Young , C Ren , T W Goh , B P Williams , Y Li , S Y Chen , M N Ismail , W Huang . et al.. Probing the interface between encapsulated nanoparticles and metal-organic frameworks for catalytic selectivity control. Chemistry of Materials, 2021, 33(6): 1946–1953
https://doi.org/10.1021/acs.chemmater.0c03007
91 H Ye , H Zhao , Y Jiang , H Liu , Z Hou . Catalytic transfer hydrogenation of the C=O bond in unsaturated aldehydes over Pt nanoparticles embedded in porous UiO-66 nanoparticles. ACS Applied Nano Materials, 2020, 3(12): 12260–12268
https://doi.org/10.1021/acsanm.0c02735
92 T Zhang , H Zhao , J Yang , J Zhao , L Yan , L Chou , H Song . Dual interface synergistic catalysis: the selective hydrogenation of crotonaldehyde over Pt/Co3O4@PDA. Catalysis Letters, 2023, 153(4): 965–977
https://doi.org/10.1007/s10562-022-04022-2
93 F Hou , H Zhao , H Song , L Chou , J Zhao , J Yang , L Yan . Effect of impregnation strategy on catalytic hydrogenation behavior of ptco catalysts supported on La2O2CO3 nanorods. Journal of Rare Earths, 2018, 36(9): 965–973
https://doi.org/10.1016/j.jre.2018.03.017
94 E Bailón-García , F Carrasco-Marín , A F Pérez-Cadenas , F J Maldonado-Hódar . Influence of the pretreatment conditions on the development and performance of active sites of Pt/TiO2 catalysts used for the selective citral hydrogenation. Journal of Catalysis, 2015, 327: 86–95
https://doi.org/10.1016/j.jcat.2015.04.019
95 P D Zgolicz , J P Stassi , M J Yañez , O A Scelza , Miguel S R De . Influence of the support and the preparation methods on the performance in citral hydrogenation of Pt-based catalysts supported on carbon nanotubes. Journal of Catalysis, 2012, 290: 37–54
https://doi.org/10.1016/j.jcat.2012.02.020
96 G E Ramos Montero , J P Stassi , S R De Miguel , P D Zgolicz . Hydrogenation of citral and carvone on Pt and PtSn supported metallic catalysts. A comparative study on the regioselectivity and chemoselectivity. Reaction Chemistry & Engineering, 2023, 8(12): 3133–3149
https://doi.org/10.1039/D3RE00259D
97 C A Barrales-Cortés , H Pérez-Pastenes , J C Piña-Victoria , T Viveros-García . Hydrogenation of citral on Pt/SiO2 catalysts: effect of Sn addition and type of solvent. Topics in Catalysis, 2020, 63(5–6): 468–480
https://doi.org/10.1007/s11244-020-01312-0
98 A R Rautio , P Mäki-Arvela , A Aho , K Eränen , K Kordas . Chemoselective hydrogenation of citral by Pt and Pt-Sn catalysts supported on TiO2 nanoparticles and nanowires. Catalysis Today, 2015, 241: 170–178
https://doi.org/10.1016/j.cattod.2013.12.052
99 D Yan , J Li , M Zahid , J Li , Y Zhu . Efficient catalytic selective hydrogenation of furfural to furfuryl alcohol over Pt-supported on surface amino functionalized hexagonal BN nanosheets. Applied Surface Science, 2023, 609: 155308
https://doi.org/10.1016/j.apsusc.2022.155308
100 X Tian , Y Dong , M Zahid . Synergetic catalysis of Pt/WN-TiO2 nanocomposites for selective hydrogenation of furfural to valuable furfuryl alcohol. Molecular Catalysis, 2023, 545: 113188
https://doi.org/10.1016/j.mcat.2023.113188
101 G Gao , J Remón , Z Jiang , L Yao , C Hu . Selective hydrogenation of furfural to furfuryl alcohol in water under mild conditions over a hydrotalcite-derived Pt-based catalyst. Applied Catalysis B: Environmental, 2022, 309: 121260
https://doi.org/10.1016/j.apcatb.2022.121260
102 M Y Byun , M S Lee . Pt supported on hierarchical porous carbon for furfural hydrogenation. Journal of Industrial and Engineering Chemistry, 2021, 104: 406–415
https://doi.org/10.1016/j.jiec.2021.08.038
103 Q Yang , D Gao , C Li , S Cao , S Li , H Zhao , C Li , G Zheng , G Chen . Deposition of Pt clusters onto MOFs-derived CeO2 by ALD for selective hydrogenation of furfural. Fuel, 2022, 311: 122584
https://doi.org/10.1016/j.fuel.2021.122584
104 L Liu , H Lou , M Chen . Selective hydrogenation of furfural over Pt based and Pd based bimetallic catalysts supported on modified multiwalled carbon nanotubes (MWNT). Applied Catalysis A: General, 2018, 550: 1–10
https://doi.org/10.1016/j.apcata.2017.10.003
105 S Wang , C Wu , H Yu , Y Chu , S Wang , T Li , H Yin . Tuning the catalytic performance of Pt/SiO2 catalysts by CoOx modification for selective hydrogenations of unsaturated carbonyl compounds. Applied Surface Science, 2022, 606: 154867
https://doi.org/10.1016/j.apsusc.2022.154867
106 C Wang , S Wang , Z Wu , Y Lv , G Chen , H Zhao , D Gao . Ga2O3–Pt dual-site functionally separated catalyst for efficient hydrogenation of furfural under hydrogen spillover. Fuel, 2024, 357: 129711
https://doi.org/10.1016/j.fuel.2023.129711
107 Q Yang , D Gao , C Li , S Wang , X Hu , G Zheng , G Chen . Highly dispersed Pt on partial deligandation of Ce-MOFs for furfural selective hydrogenation. Applied Catalysis B: Environmental, 2023, 328: 122458
https://doi.org/10.1016/j.apcatb.2023.122458
108 H Yu , Y Xu , K Havener , L Zhang , W Wu , X Liao , K Huang . Efficient catalysis using honeycomb-like N-doped porous carbon supported Pt nanoparticles for the hydrogenation of cinnamaldehyde in water. Molecular Catalysis, 2022, 525: 112343
https://doi.org/10.1016/j.mcat.2022.112343
109 C Liang , H Li , M Peng , X Zhang , Q Jiang , J Cui , Y Ding , Z C Zhang . Co decorated low Pt loading nanoparticles over TiO2 catalyst for selective hydrogenation of furfural. Applied Catalysis A: General, 2022, 643: 118766
https://doi.org/10.1016/j.apcata.2022.118766
110 O Y SarıbıyıkD E Resasco. Selective hydrogenation of croton aldehyde on Pt nanoparticles controlled by tailoring fraction of well-ordered facets under different pretreatment conditions. Catalysis Letters, 2023: 1–13
111 E Bailón-García , F Carrasco-Marín , A F Pérez-Cadenas , F J Maldonado-Hódar . Influence of the Pt-particle size on the performance of carbon supported catalysts used in the hydrogenation of citral. Catalysis Communications, 2016, 82: 36–40
https://doi.org/10.1016/j.catcom.2016.04.014
112 L Li , A H Larsen , N A Romero , V A Morozov , C Glinsvad , F Abild-Pedersen , J Greeley , K W Jacobsen , J K Nørskov . Investigation of catalytic finite-size-effects of platinum metal clusters. Journal of Physical Chemistry Letters, 2013, 4(1): 222–226
https://doi.org/10.1021/jz3018286
113 Y Cao , J Guerrero-Sańchez , I Lee , X Zhou , N Takeuchi , F Zaera . Kinetic study of the hydrogenation of unsaturated aldehydes promoted by CuPtx/SBA-15 single-atom alloy (SAA) catalysts. ACS Catalysis, 2020, 10(5): 3431–3443
https://doi.org/10.1021/acscatal.9b05407
114 H Wang , X Lan , S Wang , B Ali , T Wang . Selective hydrogenation of 2-pentenal using highly dispersed Pt catalysts supported on znsnal mixed metal oxides derived from layered double hydroxides. Catalysis Science & Technology, 2020, 10(4): 1106–1116
https://doi.org/10.1039/C9CY02200G
115 S Cheng , S Lu , X Liu , G Li , F Wang . Enhanced activity of alkali-treated ZSM-5 zeolite-supported Pt–Co catalyst for selective hydrogenation of cinnamaldehyde. Molecules, 2023, 28(4): 1730
https://doi.org/10.3390/molecules28041730
116 T W Goh , C K Tsung , W Huang . Spectroscopy identification of the bimetallic surface of metal-organic framework-confined Pt-Sn nanoclusters with enhanced chemoselectivity in furfural hydrogenation. ACS Applied Materials & Interfaces, 2019, 11(26): 23254–23260
https://doi.org/10.1021/acsami.9b06229
117 W Luo , L Fang , Y Meng , J Xue , T Chen , S Xia , Z Ni . Theoretical study on adsorption of α,β-unsaturated aldehydes on Ni–Pt(111) surfacet. Chemical Journal of Chinese Universities, 2019, 40: 115–122
118 M Kolodziej , E Lalik , J C Colmenares , P Lisowski , J Gurgul , D Duraczyńska , A Drelinkiewicz . Physicochemical and catalytic properties of Pd/MoO3 prepared by the sonophotodeposition method. Materials Chemistry and Physics, 2018, 204: 361–372
https://doi.org/10.1016/j.matchemphys.2017.10.060
119 Y Li , H Cheng , W Lin , C Zhang , Q Wu , F Zhao , M Arai . Solvent effects on heterogeneous catalysis in the selective hydrogenation of cinnamaldehyde over a conventional Pd/C catalyst. Catalysis Science & Technology, 2018, 8(14): 3580–3589
https://doi.org/10.1039/C8CY00943K
120 R K Abasabadi , A A Khodadadi , Y Mortazavi . Effects of nitrogen-containing functional groups of reduced graphene oxide as a support for Pd in selective hydrogenation of cinnamaldehyde. Research on Chemical Intermediates, 2021, 47(4): 1429–1446
https://doi.org/10.1007/s11164-020-04372-9
121 H Yuan , M Hong , F Dong , Y Chen , X Du , X Huang , J Gao , S Yang . Dilute Pd3Co950 alloy encapsulated in defect- and N-rich carbon nanotubes for universal highly efficient aqueous-phase catalysis. Applied Catalysis B: Environmental, 2023, 334: 122864
https://doi.org/10.1016/j.apcatb.2023.122864
122 M Hu , L Jin , Y Zhu , L Zhang , X Lu , P Kerns , X Su , S Cao , P Gao , S L Suib . et al.. Self-limiting growth of ligand-free ultrasmall bimetallic nanoparticles on carbon through under temperature reduction for highly efficient methanol electrooxidation and selective hydrogenation. Applied Catalysis B: Environmental, 2020, 264: 118553
https://doi.org/10.1016/j.apcatb.2019.118553
123 T Xu , K Sun , D Gao , C Li , X Hu , G Chen . Atomic-layer-deposition-formed sacrificial template for the construction of an MIL-53 shell to increase selectivity of hydrogenation reactions. Chemical Communications, 2019, 55(53): 7651–7654
https://doi.org/10.1039/C9CC02727K
124 T Hu , L Zhang , Y Wang , Z Yue , Y Li , J Ma , H Xiao , W Chen , M Zhao , Z Zheng . et al.. Defect engineering in Pd/NiCo2O4–x for selective hydrogenation of α,β-unsaturated carbonyl compounds under ambient conditions. ACS Sustainable Chemistry & Engineering, 2020, 8(21): 7851–7859
https://doi.org/10.1021/acssuschemeng.0c00677
125 J Pinto , A Weilhard , L T Norman , R W Lodge , D M Rogers , A Gual , I Cano , A N Khlobystov , P Licence , J Alves Fernandes . Unravelling synergistic effects in bi-metallic catalysts: deceleration of palladium-gold nanoparticle coarsening in the hydrogenation of cinnamaldehyde. Catalysis Science & Technology, 2023, 13(14): 4082–4091
https://doi.org/10.1039/D3CY00289F
126 Z Wei , Y Gong , T Xiong , P Zhang , H Li , Y Wang . Highly efficient and chemoselective hydrogenation of α,β-unsaturated carbonyls over Pd/N-doped hierarchically porous carbon. Catalysis Science & Technology, 2015, 5(1): 397–404
https://doi.org/10.1039/C4CY00946K
127 A Patel , A Patel . Selective C=C hydrogenation of unsaturated hydrocarbons in neat water over stabilized palladium nanoparticles via supported 12-tungstophosphoric acid. Catalysis Letters, 2019, 149(6): 1476–1485
https://doi.org/10.1007/s10562-019-02763-1
128 F A Harraz , S E El-Hout , H M Killa , I A Ibrahim . Catalytic hydrogenation of crotonaldehyde and oxidation of benzene over active and recyclable palladium nanoparticles stabilized by polyethylene glycol. Journal of Molecular Catalysis A: Chemical, 2013, 370: 182–188
https://doi.org/10.1016/j.molcata.2013.01.011
129 J Zhu , M Li , M Lu , J Zhu . Effect of structural properties on catalytic performance in citral selective hydrogenation over carbon-titania composite supported Pd catalyst. Catalysis Science & Technology, 2013, 3(3): 737–744
https://doi.org/10.1039/C2CY20514A
130 C Liu , C Nan , G Fan , L Yang , F Li . Facile synthesis and synergistically acting catalytic performance of supported bimetallic pdni nanoparticle catalysts for selective hydrogenation of citral. Molecular Catalysis, 2017, 436: 237–247
https://doi.org/10.1016/j.mcat.2017.04.025
131 Z Wang , X Wang , C Zhang , M Arai , L Zhou , F Zhao . Selective hydrogenation of furfural to furfuryl alcohol over Pd/TiH2 catalyst. Molecular Catalysis, 2021, 508: 111599
https://doi.org/10.1016/j.mcat.2021.111599
132 W R Silva , E Y Matsubara , J M Rosolen , P M Donate , R Gunnella . Pd catalysts supported on different hydrophilic or hydrophobic carbonaceous substrate for furfural and 5-(hydroxymethyl)-furfural hydrogenation in water. Molecular Catalysis, 2021, 504: 111496
https://doi.org/10.1016/j.mcat.2021.111496
133 B Gao , J Zhang , M Zhang , H Li , J H Yang . Highly dispersed PdCu supported on MCM-41 for efficiently selective transfer hydrogenation of furfural into furfuryl alcohol. Applied Surface Science, 2023, 619: 156716
https://doi.org/10.1016/j.apsusc.2023.156716
134 L Ruan , H Zhang , M Zhou , L Zhu , A Pei , J Wang , K Yang , C Zhang , S Xiao , B H Chen . A highly selective and efficient Pd/Ni/Ni(OH)2/C catalyst for furfural hydrogenation at low temperatures. Molecular Catalysis, 2020, 480: 110639
https://doi.org/10.1016/j.mcat.2019.110639
135 X Zhao , Y Wang , Z Zhai , C Zhuang , D Tian , H Guo , X Zou , T X Liu . Ultrafine Pd on a La metal-organic framework for selective hydrogenation of furfural via a metal-support electronic effect. ACS Applied Nano Materials, 2023, 6(10): 8315–8324
https://doi.org/10.1021/acsanm.3c00537
136 H Yan , Y Ren , R Zhang , F Chang , Q Wei , J Xu . A one-pot hydrothermal preparation of high loading Ni/La2O3 catalyst for efficient hydrogenation of cinnamaldehyde. Catalysts, 2023, 13(2): 298
https://doi.org/10.3390/catal13020298
137 X Wei , X Rang , W Zhu , M Xiang , Y Deng , F Jiang , R Mao , Z Zhang , X Kong , F Wang . Morphology effect of CeO2 on Ni/CeO2 catalysts for selective hydrogenation of cinnamaldehyde. Chemical Physics, 2021, 542: 111079
https://doi.org/10.1016/j.chemphys.2020.111079
138 Y Ling , H Ge , J Chen , Y Zhang , Y Duan , M Liang , Y Guo , T S Wu , Y L Soo , X Yin . et al.. General strategy toward hydrophilic single atom catalysts for efficient selective hydrogenation. Advanced Science, 2022, 9(25): 2202144
https://doi.org/10.1002/advs.202202144
139 L Ning , S Liao , H Li , R Tong , C Dong , M Zhang , W Gu , X Liu . Carbon-based materials with tunable morphology confined Ni (0) and Ni–Nx active sites: highly efficient selective hydrogenation catalysts. Carbon, 2019, 154: 48–57
https://doi.org/10.1016/j.carbon.2019.07.099
140 Y Ren , H Xu , B Han , J Xu . Construction of N-doped carbon-modified Ni/SiO2 catalyst promoting cinnamaldehyde selective hydrogenation. Molecules, 2023, 28(10): 4136
https://doi.org/10.3390/molecules28104136
141 H Xin , M Li , L Chen , C Zhao , P Wu , X Li . Lanthanide oxide supported Ni nanoparticles for the selective hydrogenation of cinnamaldehyde. Catalysis Science & Technology, 2023, 13(5): 1488–1500
https://doi.org/10.1039/D2CY01868C
142 N Wang , J Liu , X Li , C Wang , L Ma . One-pot synthesis of nickel encapsulated COF-derived catalyst for highly selective and efficient hydrogenation of cinnamaldehyde. Catalysis Communications, 2023, 177: 106658
https://doi.org/10.1016/j.catcom.2023.106658
143 F Tian , M Zhang , X Zhang , X Chen , J Wang , Y Zhang , C Meng , C Liang . Porous carbon-encapsulated Ni nanocatalysts for selective catalytic hydrogenation of cinnamaldehyde to hydrocinnamaldehyde. Journal of Materials Science, 2022, 57(5): 3168–3182
https://doi.org/10.1007/s10853-021-06796-z
144 K N Patil , P M Manikanta , P Srinivasappa , A H Jadhav , B M Nagaraja . Exploring the confined space and active sites of Ni@OCNTs catalyst for chemoselective hydrogenation of cinnamaldehyde to hydrocinnamaldehyde. Journal of Environmental Chemical Engineering, 2022, 10(5): 108208
https://doi.org/10.1016/j.jece.2022.108208
145 Y Chen , W Liu , P Yin , M Ju , J Wang , W Yang , Y Yang , C Shen . Synergistic effect between Ni single atoms and acid-base sites: mechanism investigation into catalytic transfer hydrogenation reaction. Journal of Catalysis, 2021, 393: 1–10
https://doi.org/10.1016/j.jcat.2020.11.019
146 Y Xu , T Su , X Luo , Z Qin , H Ji . Ni–Ti intercalated and supported bentonite for selective hydrogenation of cinnamaldehyde. ChemPhysChem, 2023, 24(10): e202200703
https://doi.org/10.1002/cphc.202200703
147 J Yu , Y Yang , L Chen , Z Li , W Liu , E Xu , Y Zhang , S Hong , X Zhang , M Wei . NiBi intermetallic compounds catalyst toward selective hydrogenation of unsaturated aldehydes. Applied Catalysis B: Environmental, 2020, 277: 119273
https://doi.org/10.1016/j.apcatb.2020.119273
148 H Zhao , H Song , L Chou . Nickel nanoparticles supported on MOF-5: synthesis and catalytic hydrogenation properties. Inorganic Chemistry Communications, 2012, 15: 261–265
https://doi.org/10.1016/j.inoche.2011.10.040
149 N Mahata , A F Cunha , J J M Órfão , J L Figueiredo . Highly selective hydrogenation of C=C double bond in unsaturated carbonyl compounds over NiC catalyst. Chemical Engineering Journal, 2012, 188: 155–159
https://doi.org/10.1016/j.cej.2012.01.127
150 H Zhao , L Chou , H Song . Exploration of Ni@Zn-MOCP via a wet impregnation strategy as a hydrogenation catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2011, 104(2): 451–465
https://doi.org/10.1007/s11144-011-0375-3
151 P Kumar , P K Sharma , S Chaturvedi , C S Chanotiya , P R Rauta , P Mohapatra , P K Rout . Synthesis of Ni-doped hydrotalcite catalyst through hydrothermal process for the selective reduction of α,β-unsaturated aldehyde (citral) to enantiospecific (+)-citronellal. Catalysis Letters, 2023, 153(10): 3019–3030
https://doi.org/10.1007/s10562-022-04195-w
152 L Yang , Z S Jiang , G L Fan , F Li . The promotional effect of ZnO addition to supported Ni nanocatalysts from layered double hydroxide precursors on selective hydrogenation of citral. Catalysis Science & Technology, 2014, 4(4): 1123–1131
https://doi.org/10.1039/c3cy01017a
153 Y Tang , D Yang , F Qin , J Hu , C Wang , H Xu . Decorating multi-walled carbon nanotubes with nickel nanoparticles for selective hydrogenation of citral. Journal of Solid State Chemistry, 2009, 182(8): 2279–2284
https://doi.org/10.1016/j.jssc.2009.05.036
154 K Wonglekha , W Tolek , O Mekasuwandumrong , W Chaitree , P Praserthdam , K Moon Lee , J Panpranot . Effects of TiO2 support and cobalt addition of Ni/TiO2 catalyst in selective hydrogenation of furfural to furfuryl alcohol. Journal of Renewable Materials, 2022, 10(8): 2055–2072
https://doi.org/10.32604/jrm.2022.019680
155 F Tang , L Wang , M Dessie Walle , A Mustapha , Y N Liu . An alloy chemistry strategy to tailoring the d-band center of Ni by Cu for efficient and selective catalytic hydrogenation of furfural. Journal of Catalysis, 2020, 383: 172–180
https://doi.org/10.1016/j.jcat.2020.01.019
156 W S Putro , T Kojima , T Hara , N Ichikuni , S Shimazu . Selective hydrogenation of unsaturated carbonyls by Ni-Fe-based alloy catalysts. Catalysis Science & Technology, 2017, 7(16): 3637–3646
https://doi.org/10.1039/C7CY00945C
157 X Meng , Y Yang , L Chen , M Xu , X Zhang , M Wei . A control over hydrogenation selectivity of furfural via tuning exposed facet of Ni catalysts. ACS Catalysis, 2019, 9(5): 4226–4235
https://doi.org/10.1021/acscatal.9b00238
158 J Zhang , D Mao , D Wu . Industrially applicable aqueous-phase selective hydrogenation of furfural on an efficient TiOx-modified Ni nanocatalyst. ACS Sustainable Chemistry & Engineering, 2021, 9(41): 13902–13914
https://doi.org/10.1021/acssuschemeng.1c05098
159 P Balla , P K Seelam , R Balaga , R Rajesh , V Perupogu , T X Liang . Immobilized highly dispersed Ni nanoparticles over porous carbon as an efficient catalyst for selective hydrogenation of furfural and levulinic acid. Journal of Environmental Chemical Engineering, 2021, 9(6): 106530
https://doi.org/10.1016/j.jece.2021.106530
160 Y Fan , C Zhuang , S Li , Y Wang , X Zou , X Liu , W Huang , G Zhu . Efficient single-atom Ni for catalytic transfer hydrogenation of furfural to furfuryl alcohol. Journal of Materials Chemistry A, 2021, 9(2): 1110–1118
https://doi.org/10.1039/D0TA10838C
161 D Yi , Y Min , B Muzzi , A Marty , I Romana , P F Fazzini , T Blon , G Viau , P Serp , K Soulantica . Epsilon cobalt nanoparticles as highly performant catalysts in cinnamaldehyde selective hydrogenation. ACS Applied Nano Materials, 2022, 5(4): 5498–5507
https://doi.org/10.1021/acsanm.1c04444
162 R Zhang , L Wang , J Ren , C Hu , B Lv . Effect of boron nitride overlayers on Co@BNNSs/BN-catalyzed aqueous phase selective hydrogenation of cinnamaldehyde. Journal of Colloid and Interface Science, 2023, 630: 549–558
https://doi.org/10.1016/j.jcis.2022.10.117
163 Y Shen , C Chen , Z Zou , Z Hu , Z Fu , W Li , S Pan , Y Zhang , H Zhang , Z Yu . et al.. Geometric and electronic effects of Co@NPC catalyst in chemoselective hydrogenation: tunable activity and selectivity via N,P co-doping. Journal of Catalysis, 2023, 421: 65–76
https://doi.org/10.1016/j.jcat.2023.03.013
164 T M Bustamante , M A Fraga , J L G Fierro , C H Campos , G Pecchi . Cobalt SiO2 core-shell catalysts for chemoselective hydrogenation of cinnamaldehyde. Catalysis Today, 2020, 356: 330–338
https://doi.org/10.1016/j.cattod.2019.04.075
165 H Cui , S Liu , Y Lv , S Wu , L Wang , F Hao , P Liu , W Xiong , H Luo . Transfer hydrogenation of cinnamaldehyde to cinnamyl alcohol in hydrophobically modified core-shell MOFs nanoreactor: identification of the formed metal-N as the structure of an active site. Journal of Catalysis, 2020, 381: 468–481
https://doi.org/10.1016/j.jcat.2019.11.024
166 J Zhao , V Malgras , J Na , R Liang , Y Cai , Y Kang , A A Alshehri , K A Alzahrani , Y G Alghamdi , T Asahi . et al.. Magnetically induced synthesis of mesoporous amorphous CoB nanochains for efficient selective hydrogenation of cinnamaldehyde to cinnamyl alcohol. Chemical Engineering Journal, 2020, 398: 125564
https://doi.org/10.1016/j.cej.2020.125564
167 H Li , J Liu , S Xie , M Qiao , W Dai , H Li . Highly active Co-B amorphous alloy catalyst with uniform nanoparticles prepared in oil-in-water microemulsion. Journal of Catalysis, 2008, 259(1): 104–110
https://doi.org/10.1016/j.jcat.2008.07.015
168 M Mo , J Tang , L Zou , Y Xun , H Guan . Improvement and regeneration of Co–B amorphous alloy nanowires for the selective hydrogenation of cinnamaldehyde. RSC Advances, 2022, 12(51): 33099–33107
https://doi.org/10.1039/D2RA05595C
169 Y Pei , P Guo , M Qiao , H Li , S Wei , H He , K Fan . The modification effect of Fe on amorphous CoB alloy catalyst for chemoselective hydrogenation of crotonaldehyde. Journal of Catalysis, 2007, 248(2): 303–310
https://doi.org/10.1016/j.jcat.2007.03.024
170 H Kurokawa , K Mori , K Yoshida , M A Ohshima , K Sugiyama , H Miura . The promoting effect of halogen ions on selective hydrogenation of (E)-2-butenal to (E)-2-buten-1-ol over alumina-supported cobalt catalyst. Catalysis Communications, 2005, 6(12): 766–769
https://doi.org/10.1016/j.catcom.2005.06.011
171 K Kouachi , G Lafaye , C Especel , O Cherifi , P Marécot . Preparation of silica-supported cobalt catalysts from water-in-oil microemulsion for selective hydrogenation of citral. Journal of Molecular Catalysis A: Chemical, 2009, 308(1–2): 142–149
https://doi.org/10.1016/j.molcata.2009.04.001
172 X Di , G Lafaye , C Especel , F Epron , J Qi , C Li , C Liang . Supported Co–Re bimetallic catalysts with different structures as efficient catalysts for hydrogenation of citral. ChemSusChem, 2019, 12(4): 807–823
https://doi.org/10.1002/cssc.201802744
173 J Zhou , Y Yang , C Li , S Zhang , Y Chen , S Shi , M Wei . Synthesis of Co–Sn intermetallic nanocatalysts toward selective hydrogenation of citral. Journal of Materials Chemistry A, 2016, 4(33): 12825–12832
https://doi.org/10.1039/C6TA04542A
174 Y J Liu , D H Zhang , X C Li , S J Deng , D Zhao , N Zhang , C Chen . Construction of highly-dispersed and composition-adjustable CoxN in stable Co@CoxN@C nanocomposite catalysts via a dual-ligand-MOF strategy for the selective hydrogenation of citral. Applied Surface Science, 2020, 505: 144387
https://doi.org/10.1016/j.apsusc.2019.144387
175 Y Tian , Y Feng , Z Li , Y Fan , J Sperry , Y Sun , S Yang , X Tang , L Lin , X Zeng . Green and efficient selective hydrogenation of furfural to furfuryl alcohol over hybrid CoOx/Nb2O5 nanocatalyst in water. Molecular Catalysis, 2023, 538: 112981
https://doi.org/10.1016/j.mcat.2023.112981
176 W Liu , J Hua , S Su , X Yang . A highly accessible and robust carbon-coated cobalt nanoparticle catalyst for furfural hydrogenative valorization at mild reaction. Molecular Catalysis, 2023, 551: 113647
https://doi.org/10.1016/j.mcat.2023.113647
177 H Ishikawa , M Sheng , A Nakata , K Nakajima , S Yamazoe , J Yamasaki , S Yamaguchi , T Mizugaki , T Mitsudome . Air-stable and reusable cobalt phosphide nanoalloy catalyst for selective hydrogenation of furfural derivatives. ACS Catalysis, 2021, 11(2): 750–757
https://doi.org/10.1021/acscatal.0c03300
178 L Xu , R Nie , X Lyu , J Wang , X Lu . Selective hydrogenation of furfural to furfuryl alcohol without external hydrogen over N-doped carbon confined Co catalysts. Fuel Processing Technology, 2020, 197: 106205
https://doi.org/10.1016/j.fuproc.2019.106205
179 P Jiang , X Li , W Gao , X Wang , Y Tang , K Lan , B Wang , R Li . Highly selective hydrogenation of α,β-unsaturated carbonyl compounds over supported Co nanoparticles. Catalysis Communications, 2018, 111: 6–9
https://doi.org/10.1016/j.catcom.2018.03.017
180 W Gong , C Chen , H Zhang , G Wang , H Zhao . Highly dispersed Co and Ni nanoparticles encapsulated in N-doped carbon nanotubes as efficient catalysts for the reduction of unsaturated oxygen compounds in aqueous phase. Catalysis Science & Technology, 2018, 8(21): 5506–5514
https://doi.org/10.1039/C8CY01488D
181 S Li , Y Fan , C Wu , C Zhuang , Y Wang , X Li , J Zhao , Z Zheng . Selective hydrogenation of furfural over the Co-based catalyst: a subtle synergy with Ni and Zn dopants. ACS Applied Materials & Interfaces, 2021, 13(7): 8507–8517
https://doi.org/10.1021/acsami.1c01436
182 W B Gong , M M Han , C Chen , Y Lin , G H Wang , H M Zhang , H J Zhao . CoO@Co nanoparticle-based catalyst for efficient selective transfer hydrogenation of α,β-unsaturated aldehydes. ChemCatChem, 2020, 12(4): 1019–1024
https://doi.org/10.1002/cctc.201901996
183 Y Tian , B Chen , Z Yu , R Huang , G Yan , Z Li , Y Sun , S Yang , X Tang , L Lin . et al.. Efficient catalytic hydrogenation of furfural over cobalt-based catalysts with adjustable acidity. Chemical Engineering Science, 2023, 270: 118527
https://doi.org/10.1016/j.ces.2023.118527
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed