Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2024, Vol. 18 Issue (6): 66   https://doi.org/10.1007/s11705-024-2424-2
  本期目录
Enhanced photocatalytic N2 fixation using KNbO3/Bi4O5Br2 type II heterojunction
Lin Yue1, Zhihao Zeng1, Xujie Ren2, Shude Yuan2, Chuanqi Xia1, Xin Hu1, Leihong Zhao1(), Lvchao Zhuang2(), Yiming He1,2()
1. Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
2. Department of Materials Science and Engineering, Zhejiang Normal University, Jinhua 321004, China
 全文: PDF(1621 KB)   HTML
Abstract

The fabrication of heterojunction catalysts is an effective strategy to enhance charge separation efficiency, thus boosting the performance of photocatalysts. This work presents the synthesis and investigation of a novel KNbO3/Bi4O5Br2 heterostructure catalyst for photocatalytic N2–to–NH3 conversion under light illumination. While morphology analysis revealed KNbO3 microcubes embedded within Bi4O5Br2 nanosheets, the composite exhibited no significant improvement in specific surface area or optical property compared to Bi4O5Br2 due to the relatively wide band gap and low surface area of KNbO3. The main contribution lies in the enhanced separation efficiency of photogenerated electrons and holes. Besides, the band structure analysis suggests that KNbO3 and Bi4O5Br2 exhibit suitable band potentials to form a type II heterojunction. Benefiting from the higher Fermi level of KNbO3 than Bi4O5Br2, the electron drift at the contact region thus occurs and leads to the formation of a built-in electric field with the direction from KNbO3 to Bi4O5Br2, accelerating electron migration and improving the operational efficiency of the photocatalysts. Consequently, the KNbO3/Bi4O5Br2 catalyst shows an increased photoactivity, achieving an NH3 generation rate 1.78 and 1.58 times those of KNbO3 and Bi4O5Br2, respectively. This work may offer valuable insights for the design and synthesis of heterojunction composite photocatalysts.

Key wordsKNbO3/Bi4O5Br2    heterojunction    photocatalytic N2 fixation    charge separation
收稿日期: 2023-12-12      出版日期: 2024-05-24
Corresponding Author(s): Leihong Zhao,Lvchao Zhuang,Yiming He   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2024, 18(6): 66.
Lin Yue, Zhihao Zeng, Xujie Ren, Shude Yuan, Chuanqi Xia, Xin Hu, Leihong Zhao, Lvchao Zhuang, Yiming He. Enhanced photocatalytic N2 fixation using KNbO3/Bi4O5Br2 type II heterojunction. Front. Chem. Sci. Eng., 2024, 18(6): 66.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-024-2424-2
https://academic.hep.com.cn/fcse/CN/Y2024/V18/I6/66
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
1 N Cherkasov , A O Ibhadon , P Fitzpatrick . A review of the existing and alternative methods for greener nitrogen fixation. Chemical Engineering and Processing, 2015, 90: 24–33
https://doi.org/10.1016/j.cep.2015.02.004
2 W R Liao , L Qi , Y L Wang , J Y Qin , G Y Liu , S J Liang , H Y He , L L Jiang . Interfacial engineering promoting electrosynthesis of ammonia over Mo/phosphotungstic acid with high performance. Advanced Functional Materials, 2021, 31(22): 2009151
https://doi.org/10.1002/adfm.202009151
3 D Liu , H P Yan , J W Lin , S W Lu , Y Q Xie , X B Peng , S J Liang , L L Jiang . Regulation of cerium species in Keggin structure of phosphotungstic acid for efficient nitrogen electroreduction to ammonia. Chemical Engineering Science, 2024, 283: 119448
https://doi.org/10.1016/j.ces.2023.119448
4 H H Fang , D Liu , Y Luo , Y L Zhou , S J Liang , X Y Wang , B Y Lin , L L Jiang . Challenges and opportunities of Ru-based catalysts toward the synthesis and utilization of ammonia. ACS Catalysis, 2022, 12(7): 3938–3954
https://doi.org/10.1021/acscatal.2c00090
5 T L Ren , Y W Sheng , M Z Wang , K L Ren , L L Wang , Y Xu . Recent advances of Cu-based materials for electrochemical nitrate reduction to ammonia. Chinese Journal of Structural Chemistry, 2022, 41(12): 2212089–2212106
6 S Chen , D Liu , T Peng . Fundamentals and recent progress of photocatalytic nitrogen-fixation reaction over semiconductors. Solar RRL, 2021, 5(2): 2000487
https://doi.org/10.1002/solr.202000487
7 X J Li , C R Zhao , J F Wang , J Y Zhang , Y Wu , Y M He . Cu-doped Bi/Bi2WO6 catalysts for efficient N2 fixation by photocatalysis. Frontiers of Chemical Science and Engineering, 2023, 17(10): 1412–1422
https://doi.org/10.1007/s11705-023-2312-1
8 X Qing , X P Yue , J Q Feng , J X Liu , X C Zhang , C M Zhang , Y W Wang , Y F Wang , Z P Lv , R Li . et al.. Facile synthesis of 2D Bi4O5Br2/2D thin layer-Ti3C2 for improved visible-light photocatalytic hydrogen evolution. Journal of Solid State Chemistry, 2020, 289: 121470
https://doi.org/10.1016/j.jssc.2020.121470
9 J Di , Y Li , Y Zhang , Y L Liu , S W Wang , Y Wu , H M Li , J Xia . Layer-contacted graphene-like BN/ultrathin Bi3O4Br stacking for boosting photocatalytic molecular oxygen activation. Transactions of Tianjin University, 2023, 29(3): 235–245
https://doi.org/10.1007/s12209-022-00344-9
10 Z R Miao , Q L Wang , Y F Zhang , L P Meng , X X Wang . In situ construction of S-scheme AgBr/BiOBr heterojunction with surface oxygen vacancy for boosting photocatalytic CO2 reduction with H2O. Applied Catalysis B: Environmental, 2022, 301: 120802
https://doi.org/10.1016/j.apcatb.2021.120802
11 C R Zhao , X J Li , L Yue , X J Ren , S D Yuan , Z H Zeng , Y M He . Fabrication of novel BiPO4/Bi4O5Br2 heterojunctions for improving photoactivity in N2 fixation and dye degradation. Materials Research Bulletin, 2023, 167: 112377
https://doi.org/10.1016/j.materresbull.2023.112377
12 A Chawla , A Sudhaik , P Sonu , T Raizada , Q V Ahamad , V H Le , S Nguyen , A K Thakur , R Mishra , P Selvasembian . Bi-rich BixOyBrz-based photocatalysts for energy conversion and environmental remediation: a review. Coordination Chemistry Reviews, 2023, 491: 215246
https://doi.org/10.1016/j.ccr.2023.215246
13 K F Zhang , H X Chen , W B Pei , H X Dai , J S Li , Y F Zhu . Enhanced photocatalytic performance of Bi4O5Br2 with three-dimensionally ordered macroporous structure for phenol removal. Nano Research, 2023, 16(7): 1–11
https://doi.org/10.1007/s12274-023-5582-5
14 A Chachvalvutikul , T Luangwanta , B Inceesungvorn , S Kaowphong . Bismuth-rich oxyhalide (Bi7O9I3–Bi4O5Br2) solid-solution photocatalysts for the degradation of phenolic compounds under visible light. Journal of Colloid and Interface Science, 2023, 641: 595–609
https://doi.org/10.1016/j.jcis.2023.03.063
15 S VadivelL GnanasekaranN Balasubramanian. Revealing the charge transfer mechanism in Er ion-doped Bi4O5Br2/g-C3N5 nanocomposite for efficient photocatalytic degradation of antibiotic tetracycline. Carbon Letters, 2023: 1–10
16 B Wang , J Z Zhao , H L Chen , Y X Weng , H Tang , Z R Chen , W S Zhu , Y B She , J X Xia , H M Li . Unique Z-scheme carbonized polymer dots/Bi4O5Br2 hybrids for efficiently boosting photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2021, 293: 120182
https://doi.org/10.1016/j.apcatb.2021.120182
17 F T Yi , J Q Ma , C W Lin , L Y Wang , H N Zhang , Y X Qian , K F Zhang . Insights into the enhanced adsorption/photocatalysis mechanism of a Bi4O5Br2/g-C3N4 nanosheet. Journal of Alloys and Compounds, 2020, 821: 153557
https://doi.org/10.1016/j.jallcom.2019.153557
18 C R Zhao , X J Li , L Yue , X J Ren , S D Yuan , Z H Zeng , X Hu , Y Wu , Y M He . Bi4O5Br2 nanoflower and CdWO4 nanorod heterojunctions for photocatalytic synthesis of ammonia. ACS Applied Nano Materials, 2023, 6(17): 15709–15720
https://doi.org/10.1021/acsanm.3c02504
19 X Chen , Y Li , Z Wu , X Xu , W Zhu , X Gao . Bi4O5Br2 anchored on Ti3C2 MXene with ohmic heterojunction in photocatalytic NH3 production: insights from combined experimental and theoretical calculations. Journal of Colloid and Interface Science, 2021, 602: 553–562
https://doi.org/10.1016/j.jcis.2021.06.049
20 J Wang , B Zhao , C Wang . TiO2/KNbO3 nanocomposite for enhanced humidity sensing performance. Sensors and Actuators. A, Physical, 2023, 349: 114057
https://doi.org/10.1016/j.sna.2022.114057
21 J Li , R Wang , Z W Bai , G Wang , X M Zhang , J S Yuan , J Y Zhou , E R Xie , X J Pan . Enhanced performance of photoelectrochemical type ultraviolet photodetector by constructing a KNbO3/ZnO heterojunction. Sensors and Actuators. A, Physical, 2023, 358: 114434
https://doi.org/10.1016/j.sna.2023.114434
22 J G Fisher , U T Thuan , M U Farooq , G Chandrasekaran , Y D Jung , E C Hwang , J J Lee , V K Lakshmanan . Prostate cancer cell-specific cytotoxicity of sub-micron potassium niobate powder. Journal of Nanoscience and Nanotechnology, 2018, 18(5): 3141–3147
https://doi.org/10.1166/jnn.2018.14666
23 H Zhang , Y Huang , G Li , G Wang , D Fang , Y Song , J Wang . Preparation of Er3+: Y3Al5O12/WO3-KNbO3 composite and application in treatment of methamphetamine under ultrasonic irradiation. Ultrasonics Sonochemistry, 2017, 35: 478–488
https://doi.org/10.1016/j.ultsonch.2016.11.004
24 T T Zhang , K Zhao , J G Yu , J Jin , Y Qi , H Q Li , X J Hou , G Liu . Photocatalytic water splitting for hydrogen generation on cubic, orthorhombic, and tetragonal KNbO3 microcubes. Nanoscale, 2013, 5(18): 8375–8383
https://doi.org/10.1039/c3nr02356g
25 R Huang , W Cai , H Zhang , Z H Wang , Q Zhang , R L Gao , G Chen , X L Deng , X Lei , J L Dong . et al.. Highly synergistic and polarized KNbO3/WO3 heterojunction for piezo-photocatalytic degradation of organic pollutant. Journal of Environmental Chemical Engineering, 2023, 11(3): 110177
https://doi.org/10.1016/j.jece.2023.110177
26 H F Shi , C L Zhang , C P Zhou , G Q Chen . Conversion of CO2 into renewable fuel over Pt-gC3N4/KNbO3 composite photocatalyst. RSC Advances, 2015, 5(113): 93615–93622
https://doi.org/10.1039/C5RA16870H
27 W Q Zhang , P X Xing , J Y Zhang , L Chen , J Y Yang , X Hu , L H Zhao , Y Wu , Y M He . Facile preparation of novel nickel sulfide modified KNbO3 heterojunction composite and its enhanced performance in photocatalytic nitrogen fixation. Journal of Colloid and Interface Science, 2021, 590: 548–560
https://doi.org/10.1016/j.jcis.2021.01.086
28 P X Xing , W Q Zhang , L Chen , X Q Dai , J Y Zhang , L H Zhao , Y M He . Preparation of a NiO/KNbO3 nanocomposite via a photodeposition method and its superior performance in photocatalytic N2 fixation. Sustainable Energy & Fuels, 2020, 4(3): 1112–1117
https://doi.org/10.1039/C9SE01003C
29 R Li , Y Y Cai , S Y Liang , A Aihemaiti , Z T Zhang . Improved piezocatalytic activity with Ag2O@KNbO3: mechanisms and performance in organic pollutant degradation. Applied Surface Science, 2024, 644: 158811
https://doi.org/10.1016/j.apsusc.2023.158811
30 C Y Wang , C Hu , F Chen , H T Li , Y H Zhang , T Y Ma , H W Huang . Polar layered bismuth-rich oxyhalide piezoelectrics Bi4O5X2 (X = Br, I): efficient piezocatalytic pure water splitting and interlayer anion-dependent activity. Advanced Functional Materials, 2023, 33(29): 2301144
https://doi.org/10.1002/adfm.202301144
31 L Chen , J F Wang , X T Li , J Y Zhang , C R Zhao , X Hu , H J Lin , L H Zhao , Y Wu , Y M He . Facile preparation of Ag2S/KTa0.5Nb0.5O3 heterojunction for enhanced performance in catalytic nitrogen fixation via photocatalysis and piezo-photocatalysis. Green Energy & Environment, 2023, 8(6): 1630–1643
https://doi.org/10.1016/j.gee.2022.03.007
32 P X Xing , S J Wu , Y J Chen , P F Chen , X Hu , H J Lin , L H Zhao , Y M He . New application and excellent performance of Ag/KNbO3 nanocomposite in photocatalytic NH3 synthesis. ACS Sustainable Chemistry & Engineering, 2019, 7(14): 12408–12418
https://doi.org/10.1021/acssuschemeng.9b01938
33 Y Y Guo , W B Zhang , Y N Yang , C Wang . The photocatalytic efficiency enhancement of Bi4O5Br2 by Li-intercalation for NO removal. Journal of Physics and Chemistry of Solids, 2021, 159: 110256
https://doi.org/10.1016/j.jpcs.2021.110256
34 J Sun , X Li , J Li , M Mu , X Yin . Fabrication of Bi4O5Br2-decorated rod-like MOF-derived MoS2 hierarchical heterostructures for boosting photocatalytic CO2 reduction. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2022, 653: 129940
https://doi.org/10.1016/j.colsurfa.2022.129940
35 L Chen , X Q Dai , X J Li , J F Wang , H F Chen , X Hu , H J Lin , Y M He , Y Wu , M H Fan . A novel Bi2S3/KTa0.75Nb0.25O3 nanocomposite with high efficiency for photocatalytic and piezocatalytic N2 fixation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2021, 9(22): 13344–13354
https://doi.org/10.1039/D1TA02270A
36 L M Schabbach , B C D Santos , L S D Bortoli , M C Fredel , B Henriques . Application of Kubelka-Munk model on the optical characterization of translucent dental zirconia. Materials Chemistry and Physics, 2021, 258: 123994
https://doi.org/10.1016/j.matchemphys.2020.123994
37 Y Zhang , H Pan , F Zhang . Solvothermal synthesis of CDs/Bi4O5Br2 nanocomposites with improved visible-light photocatalytic ciprofloxacin (CIP) decontamination. Materials Letters, 2019, 251: 114–117
https://doi.org/10.1016/j.matlet.2019.05.010
38 D E Scaife . Oxide semiconductors in photoelectrochemical conversion of solar energy. Solar Energy, 1980, 25(1): 41–54
https://doi.org/10.1016/0038-092X(80)90405-3
39 S D Yuan , J F Wang , C R Zhao , L Yue , X J Ren , Z H Zeng , X Hu , Y Wu , Y M He . S-scheme Bi2O3/CdMoO4 hybrid with highly efficient charge separation for photocatalytic N2 fixation and tetracycline degradation: fabrication, catalytic optimization, physicochemical studies. Separation and Purification Technology, 2023, 325: 124665
https://doi.org/10.1016/j.seppur.2023.124665
40 X J Ren , J F Wang , S D Yuan , C R Zhao , L Yue , Z H Zeng , Y M He . Decoration of CdMoO4 micron polyhedron with Pt nanoparticle and their enhanced photocatalytic performance in N2 fixation and water purification. Frontiers of Chemical Science and Engineering, 2023, 17(12): 1949–1961
https://doi.org/10.1007/s11705-023-2360-6
41 Y Wang , H Li , Q Y Lin , J W Zhao , X Fang , N Wen , Z Z Zhang , Z X Ding , R S Yuan , X H Huang , J Long . Nanoscale 0D/1D heterojunction of MAPbBr3/COF toward efficient LED-driven S–S coupling reactions. ACS Catalysis, 2023, 13(23): 15493–15504
https://doi.org/10.1021/acscatal.3c03051
42 Y C Wei , Q Q Zhang , Y Zhou , X F Ma , L L Wang , Y J Wang , R J Sa , J L Long , X Z Fu , R S Yuan . Noble-metal-free plasmonic MoO3‒x-based S-scheme heterojunction for photocatalytic dehydrogenation of benzyl alcohol to storable H2 fuel and benzaldehyde. Chinese Journal of Catalysis, 2022, 43(10): 2665–2677
https://doi.org/10.1016/S1872-2067(22)64124-X
43 B Su , H W Huang , Z X Ding , M B J Roeffaers , S B Wang , J L Long . S-scheme CoTiO3/Cd9.51Zn0.49S10 heterostructures for visible-light driven photocatalytic CO2 reduction. Journal of Materials Science and Technology, 2022, 124: 164–170
https://doi.org/10.1016/j.jmst.2022.01.030
44 M Lin , M L Luo , Y Z Liu , J N Shen , J L Long , Z Z Zhang . 1D S-scheme heterojunction of urchin-like SiC-W18O49 for enhancing photocatalytic CO2 reduction. Chinese Journal of Catalysis, 2023, 50(7): 239–248
https://doi.org/10.1016/S1872-2067(23)64477-8
45 J W Zhao , F K Liu , W J Wang , Y Wang , N Wen , Z Z Zhang , W X Dai , R S Yuan , Z X Ding , J L Long . S-scheme-heterojunction LaNiO3/CdLa2S4 photocatalyst for solar-driven CO2-to-CO conversion. ACS Applied Nano Materials, 2023, 6(10): 8927–8936
https://doi.org/10.1021/acsanm.3c01443
46 A Ray , S Sultana , S P Tripathy , K Parida . Aggrandizing the photoactivity of ZnO nanorods toward N2 reduction and H2 evolution through facile in situ coupling with NixPy. ACS Sustainable Chemistry & Engineering, 2021, 9(18): 6305–6317
https://doi.org/10.1021/acssuschemeng.1c00165
47 Y X ZhaoR ShiX N BianC ZhouY F ZhaoS ZhangF WuG I N WaterhouseL Z WuC H Tung, et al.. Ammonia detection methods in photocatalytic and electrocatalytic experiments: how to improve the reliability of NH3 production rates? Advanced Science, 2019, 6(8): 1802109
48 X Gao , Y J Wen , D Qu , L An , S L Luan , W S Jiang , X P Zong , X Y Liu , Z C Sun . Interference effect of alcohol on Nessler’s reagent in photocatalytic nitrogen fixation. ACS Sustainable Chemistry & Engineering, 2018, 6(4): 5342–5348
https://doi.org/10.1021/acssuschemeng.8b00110
49 C R ZhaoL YueS D YuanX J RenZ H ZengX HuL H ZhaoY WuY M He. Enhanced photocatalytic N2 fixation and water purification using Bi/ZnSnO3 composite: mechanistic insights and novel applications. Journal of Industrial and Engineering Chemistry, 2024
50 L L Zhang , L X Ding , G F Chen , X F Yang , H H Wang . Ammonia synthesis under ambient conditions: selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets. Angewandte Chemie International Edition, 2019, 58(9): 2612–2616
https://doi.org/10.1002/anie.201813174
[1] FCE-23103-OF-YL_suppl_1 Download
[2] FCE-23103-OF-YL_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed