Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2024, Vol. 18 Issue (6): 67   https://doi.org/10.1007/s11705-024-2425-1
  本期目录
Theoretical study on the effect of H2O on the formation mechanism of NOx precursors during indole pyrolysis
Ziqi Wang1, Jun Shen1(), Xuesong Liu1, Sha Wang1, Shengxiang Deng1, Hai Zhang2, Yun Guo1()
1. School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
2. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
 全文: PDF(1678 KB)   HTML
Abstract

The incineration technology of kitchen waste is one of the effective technologies to achieve the resource utilization of municipal solid waste. Pyrolysis is an important stage of incineration. Indole is a rich initial product in the pyrolysis process of kitchen waste, and the presence of H2O has a significant impact on the decomposition of indole to form NOx precursors. Therefore, this study uses density functional theory method to study the effect of H2O on the thermal decomposition of indole to produce NH3, HNCO, and HCN. When H2O participates in the reaction, it can provide oxidative groups to generate a new product HNCO, which is different from the previous findings by indole pyrolysis without the presence of H2O. Meanwhile, this study theoretically proves that NH3 is easier to form than HCN. This is consistent with the phenomenon that NH3 release is higher than HCN release in pyrolysis experiment. In addition, compared with the individual pyrolysis of indole, the participation of H2O reduces the energy barriers for the formation of NH3 and HCN during indole pyrolysis, thereby promoting the formation of NH3 and HCN.

Key wordsindole    pyrolysis    H2O    NOx precursors    DFT
收稿日期: 2023-12-14      出版日期: 2024-05-27
Corresponding Author(s): Jun Shen,Yun Guo   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2024, 18(6): 67.
Ziqi Wang, Jun Shen, Xuesong Liu, Sha Wang, Shengxiang Deng, Hai Zhang, Yun Guo. Theoretical study on the effect of H2O on the formation mechanism of NOx precursors during indole pyrolysis. Front. Chem. Sci. Eng., 2024, 18(6): 67.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-024-2425-1
https://academic.hep.com.cn/fcse/CN/Y2024/V18/I6/67
Fig.1  
Indole Indole + H2O
Initial reaction mode Energy barrier/(kJ·mol?1) Initial reaction mode Energy barrier/(kJ·mol?1)
260.9 240.3
302.8 202.7
226.9 275.7
367.1 360.5
373.0 313.9
495.2 300.9
497.8
Tab.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
PathwaysRate-determining stepsEnergy barriers/ (kJ·mol–1)NOx precursors
Path A1A1-TS2505.0HCN
Path A2A2-TS4601.0HCN
Path B1B-TS2490.4NH3
Path B2B-TS2490.4HNCO
Path B3B-TS2490.4HNCO
Path CC-TS2334.3NH3
Path D1D1-TS4438.9HCN
Path D2D2-TS4519.6HCN
Path E1E1-TS3489.3NH3
Path E2E2-TS4605.7HCN
Path F1F-TS1300.9NH3
Path F2F-TS1300.9NH3
Path F3F3-TS2449.8HCN
Tab.2  
Fig.10  
1 H Li , J Xu , S Mbugua Nyambura , J Wang , C Li , X Zhu , X Feng , Y Wang . Food waste pyrolysis by traditional heating and microwave heating: a review. Fuel, 2022, 324: 124574
https://doi.org/10.1016/j.fuel.2022.124574
2 R Zhang , M Zhang , H Mou , Z An , H Fu , X Su , C Chen , J Chen , H Lin , F Sun . Comparation of mesophilic and thermophilic anaerobic co-digestion of food waste and waste activated sludge driven by biochar derived from kitchen waste. Journal of Cleaner Production, 2023, 408: 137123
https://doi.org/10.1016/j.jclepro.2023.137123
3 S M Nyambura , W Jufei , L Hua , F Xuebin , P Xingjia , L Bohong , R Ahmad , X Jialiang , G Bertrand , J Ndiithi , L Xuhui . Microwave co-pyrolysis of kitchen food waste and rice straw for waste reduction and sustainable biohydrogen production: thermo-kinetic analysis and evolved gas analysis. Sustainable Energy Technologies and Assessments, 2022, 52: 102072
https://doi.org/10.1016/j.seta.2022.102072
4 A M Elgarahy , M G Eloffy , A Alengebawy , D El Sherif , M Gaballah , K Elwakeel , M El Qelish . Sustainable management of food waste; pre-treatment strategies, techno-economic assessment, bibliometric analysis, and potential utilizations: a systematic review. Environmental Research, 2023, 225: 115558
https://doi.org/10.1016/j.envres.2023.115558
5 P T Cai , T Chen , B Chen , Y Wang , Z Ma , J Yan . The impact of pollutant emissions from co-incineration of industrial waste in municipal solid waste incinerators. Fuel, 2023, 352: 129027
https://doi.org/10.1016/j.fuel.2023.129027
6 X Liu , J Shen , Y Guo , S Wang , B Chen , L Luo , H Zhang . Technical progress and perspective on the thermochemical conversion of kitchen waste and relevant applications: a comprehensive review. Fuel, 2023, 331: 125803
https://doi.org/10.1016/j.fuel.2022.125803
7 W Zhang , H Tan , Y Chen , H Yang , H Chen . Pyrolysis of hydrochar from hydrothermal treatment of kitchen waste: effects of temperature, catalysts, and KOH addition. Journal of Analytical and Applied Pyrolysis, 2022, 167: 105664
https://doi.org/10.1016/j.jaap.2022.105664
8 Y Feng , T Bu , Q Zhang , M Han , Z Tang , G Yuan , D Chen , Y Hu . Pyrolysis characteristics of anaerobic digestate from kitchen waste and availability of phosphorus in pyrochar. Journal of Analytical and Applied Pyrolysis, 2022, 168: 105729
https://doi.org/10.1016/j.jaap.2022.105729
9 Z Wang , J Shen , X Liu , Y Guo , S Wang , S Deng , H Zhang . A review on nitrogen migration mechanism during the pyrolysis of organic solid waste: DFT, ReaxFF MD and experimental study. Journal of Analytical and Applied Pyrolysis, 2023, 176: 106250
https://doi.org/10.1016/j.jaap.2023.106250
10 J Zhang , Y Tian , Y Cui , W Zuo , T Tan . Key intermediates in nitrogen transformation during microwave pyrolysis of sewage sludge: a protein model compound study. Bioresource Technology, 2013, 132: 57–63
https://doi.org/10.1016/j.biortech.2013.01.008
11 D Jiang , J Li , S Wang , H Li , L Qian , B Li , X Cheng , Y Hu , X Hu . Cyclic compound formation mechanisms during pyrolysis of typical aliphatic acidic amino acids. ACS Sustainable Chemistry & Engineering, 2020, 8(45): 16968–16978
https://doi.org/10.1021/acssuschemeng.0c07108
12 E O Ebikade , S Sadula , Y Gupta , D Vlachos . A review of thermal and thermocatalytic valorization of food waste. Green Chemistry, 2021, 23(8): 2806–2833
https://doi.org/10.1039/D1GC00536G
13 K Li , L Zhang , L Zhu , X Zhu . Comparative study on pyrolysis of lignocellulosic and algal biomass using pyrolysis-gas chromatography/mass spectrometry. Bioresource Technology, 2017, 234: 48–52
https://doi.org/10.1016/j.biortech.2017.03.014
14 J Shen , X Liu , S Wang , B Chen , X Deng , X Qiu , Z Wang , H Zhang , Y Guo . Theoretical study on nitrogen migration mechanism during the pyrolysis of 2-pyrrolidone. Fuel, 2023, 345: 128260
https://doi.org/10.1016/j.fuel.2023.128260
15 M Qing , Y Zheng , L Liu , S Huang , H Zeng , H Tian , J Xiang . Experimental and DFT study on the migration and transformation mechanism of nitrogen during the pyrolysis of food waste. Fuel, 2023, 342: 127773
https://doi.org/10.1016/j.fuel.2023.127773
16 S Guo , T Liu , J Hui , D Che , X Li , B Sun , S Li . Effects of calcium oxide on nitrogen oxide precursor formation during sludge protein pyrolysis. Energy, 2019, 189: 116217
https://doi.org/10.1016/j.energy.2019.116217
17 Y Yamamoto , Y Sato , T Ebina , C Yokoyama , S Takahasi , Y Mito , H Tanabe , N Nishiguchi , K Nagaoka . Separation of high purity indole from coal tar by high pressure crystallization. Fuel, 1991, 70(4): 565–566
https://doi.org/10.1016/0016-2361(91)90039-D
18 H Shui , Y Zhou , H Li , Z Wang , Z Lei , S Ren , C Pan , W Wang . Thermal dissolution of Shenfu coal in different solvents. Fuel, 2013, 108: 385–390
https://doi.org/10.1016/j.fuel.2012.11.005
19 Q Ren , C Zhao . NOx and N2O precursors from biomass pyrolysis: nitrogen transformation from amino acid. Environmental Science & Technology, 2012, 46(7): 4236–4240
https://doi.org/10.1021/es204142e
20 X ZhouR Liu. A density functional theory study of the pyrolysis mechanisms of indole. Journal of Molecular Structure THEOCHEM, 1999, 461–462: 569–579
21 L Lixia , R Zhang , B Wang , K Xie . Pyrolysis mechanisms of quinoline and isoquinoline with density functional theory. Chinese Journal of Chemical Engineering, 2009, 17(5): 805–813
https://doi.org/10.1016/S1004-9541(08)60280-3
22 M Corval . An electron impact study of HCN elimination from indole by use of 13C labelling. OMS, Organic Mass Spectrometry, 1981, 16(10): 444–447
https://doi.org/10.1002/oms.1210161005
23 A Laskin , A Lifshitz . Isomerization and decomposition of indole. Experimental results and kinetic modeling. Journal of Physical Chemistry A, 1997, 101(42): 7787–7801
https://doi.org/10.1021/jp971769+
24 J Liu , X Zhang , B Hu , Q Lu , D Liu , C Dong , Y Yang . Formation mechanism of HCN and NH3 during indole pyrolysis: a theoretical DFT study. Journal of the Energy Institute, 2020, 93(2): 649–657
https://doi.org/10.1016/j.joei.2019.05.015
25 F Cheng , H Bayat , U Jena , C Brewer . Impact of feedstock composition on pyrolysis of low-cost, protein- and lignin-rich biomass: a review. Journal of Analytical and Applied Pyrolysis, 2020, 147: 104780
https://doi.org/10.1016/j.jaap.2020.104780
26 K Maliutina , A Tahmasebi , J Yu . The transformation of nitrogen during pressurized entrained-flow pyrolysis of Chlorella vulgaris. Bioresource Technology, 2018, 262: 90–97
https://doi.org/10.1016/j.biortech.2018.04.073
27 Y Wei , H Tian , L Liu , S Cheng , M Qing , Y Chen , H Yang , Y Yang . The effects of alkali metals and alkaline earth metals on the mechanism of N-containing gases production during glutamic acid pyrolysis. Journal of Analytical and Applied Pyrolysis, 2022, 168: 105787
https://doi.org/10.1016/j.jaap.2022.105787
28 D C Park , S J Day , P F Nelson . Nitrogen release during reaction of coal char with O2, CO2, and H2O. Proceedings of the Combustion Institute, 2005, 30(2): 2169–2175
https://doi.org/10.1016/j.proci.2004.08.051
29 E Hu , X Zeng , D Ma , F Wang , X Yi , Y Li , X Fu . Effect of the moisture content in coal on the pyrolysis behavior in an indirectly heated fixed-bed reactor with internals. Energy & Fuels, 2017, 31(2): 1347–1354
https://doi.org/10.1021/acs.energyfuels.6b02780
30 J Liu , Q Lu , X Jiang , B Hu , X Zhang , C Dong , Y Yang . Theoretical investigation of the formation mechanism of NH3 and HCN during pyrrole pyrolysis: the effect of H2O. Molecules. Molecules, 2018, 23(4): 711
https://doi.org/10.3390/molecules23040711
31 R DenningtonT A KeithJ M Millam. GaussianView. Version6. Semichem, Inc, Shawnee Mission KS
32 G Xu , H Wang , Y Yu , H He . Role of silver species in H2-NH3-SCR of NOx over Ag/Al2O3 catalysts: operando spectroscopy and DFT calculations. Journal of Catalysis, 2021, 395: 1–9
https://doi.org/10.1016/j.jcat.2020.12.025
33 D Zhao , H Liu , P Lu , H Yu , M Qin . A DFT study of the mechanism of H transfer during steam gasification. Combustion and Flame, 2020, 219: 327–338
https://doi.org/10.1016/j.combustflame.2020.06.006
34 H Yun , Y J Kim , S B Kim , H J Yoon , S K Kwak , K B Lee . Preparation of copper-loaded porous carbons through hydrothermal carbonization and ZnCl2 activation and their application to selective CO adsorption: experimental and DFT calculation studies. Journal of Hazardous Materials, 2022, 426: 127816
https://doi.org/10.1016/j.jhazmat.2021.127816
35 J Liu , W Zhao , S Yang , B Hu , M Xu , S Ma , Q Lu . Formation mechanism of NOx precursors during the pyrolysis of 2,5-diketopiperazine based on experimental and theoretical study. Science of the Total Environment, 2021, 801: 149663
https://doi.org/10.1016/j.scitotenv.2021.149663
36 J Liu , X Zhang , Q Lu , A Shaw , B Hu , X Jiang , C Dong . Mechanism study on the effect of alkali metal ions on the formation of HCN as NOx precursor during coal pyrolysis. Journal of the Energy Institute, 2019, 92(3): 604–612
https://doi.org/10.1016/j.joei.2018.03.012
37 J Liu , W Zhao , X Fan , M Xu , S Zheng , Q Lu . Effect of alkali metal ions on the formation mechanism of HCN during pyridine pyrolysis. International Journal of Coal Science & Technology, 2021, 8(3): 349–359
https://doi.org/10.1007/s40789-021-00427-3
38 D Jiang , H Li , S Wang , X Cheng , P Bartocci , F Fantozzi . Insight the CO2 adsorption onto biomass-pyrolysis derived char via experimental analysis coupled with DFT calculation. Fuel, 2023, 332: 125948
https://doi.org/10.1016/j.fuel.2022.125948
39 D Jiang , H Li , X Cheng , Q Ling , B Barati , Q Yao , A Abomohra , X Hu , P Bartocci . et al.. A mechanism study of methylene blue adsorption on seaweed biomass derived carbon: from macroscopic to microscopic scale. Process Safety and Environmental Protection, 2023, 172: 1132–1143
https://doi.org/10.1016/j.psep.2023.02.044
40 D Jiang , H Li , X Cheng , A Abomohra , Y Hu , A Babadi , P Bartocci , X Hu , S Wang . Chemical process of multiphase system in lignin-biochar co-pyrolysis for enhanced phenol recovery. Fuel Processing Technology, 2023, 250: 107882
https://doi.org/10.1016/j.fuproc.2023.107882
41 D Jiang , C Yuan , X Cheng , S Wang , H Li , X Yang . Study on the pyrolysis mechanism of unsaturated fatty acid: a combined density functional theory and experimental study. International Journal of Energy Research, 2022, 46(2): 2029–2040
https://doi.org/10.1002/er.7251
42 M J FrischG W TrucksH B SchlegelG E ScuseriaM A RobbJ R Cheeseman. Gaussian 16, Revision A.03. Wallingford CT: Gaussian Inc, 2016
43 T Lu , F Chen . Multiwfn: a multifunctional wavefunction analyzer. Journal of Computational Chemistry, 2012, 33(5): 580–592
https://doi.org/10.1002/jcc.22885
44 M L Poutsma . Free-radical thermolysis and hydrogenolysis of model hydrocarbons relevant to processing of coal. Energy & Fuels, 1990, 4(2): 113–131
https://doi.org/10.1021/ef00020a001
45 L W Vernon . Free radical chemistry of coal liquefaction: role of molecular hydrogen. Fuel, 1980, 59(2): 102–106
https://doi.org/10.1016/0016-2361(80)90049-6
46 Z WangJ ShenX LiuY GuoS WangS DengT WuH Zhang. Theoretical study on the formation mechanism of NOx precursors during the pyrolysis of 2,4-imidazolinediketone. Combustion Science and Technology, Taylor & Francis, 2023, 1–19
47 B Wehrli , W Stumm . Vanadyl in natural waters: adsorption and hydrolysis promote oxygenation. Geochimica et Cosmochimica Acta, 1989, 53(1): 69–77
https://doi.org/10.1016/0016-7037(89)90273-1
48 D Jiang , S Wang , H Li , L Xu , X Hu , B Barati , A Zheng . Insight into the mechanism of glycerol dehydration and subsequent pyridine synthesis. ACS Sustainable Chemistry & Engineering, 2021, 9(8): 3095–3103
https://doi.org/10.1021/acssuschemeng.0c07460
49 X Zhu , S Yang , L Wang , L Liu , F Qian , W Yao , S Zhang , J Chen . Tracking the conversion of nitrogen during pyrolysis of antibiotic mycelial fermentation residues using XPS and TG-FTIR-MS technology. Environmental Pollution, 2016, 211: 20–27
https://doi.org/10.1016/j.envpol.2015.12.032
50 J Meng , J Wang , F Yang , F Cheng . Unveiling the complex effect of Fe2O3 on NOx precursors evolution mechanism during sludge protein pyrolysis based on product characteristics. Fuel, 2024, 358: 130105
https://doi.org/10.1016/j.fuel.2023.130105
51 X Liu , J Shen , S Deng , S Wang , B Chen , Z Wang , H Zhang , Y Guo . Unveiling the role of sodium ion in the conversion of amino acid intermediates and the formation mechanism of NOx precursors during kitchen waste pyrolysis. Journal of Analytical and Applied Pyrolysis, 2023, 173: 106085
https://doi.org/10.1016/j.jaap.2023.106085
52 F J Tian , J Yu , L J McKenzie , J Hayashi , C Li . Conversion of fuel-N into HCN and NH3 during the pyrolysis and gasification in steam: a comparative study of coal and biomass. Energy & Fuels, 2007, 21(2): 517–521
https://doi.org/10.1021/ef060415r
53 Q Ren , C Zhao , X Chen , L Duan , Y Li , C Ma . NOx and N2O precursors (NH3 and HCN) from biomass pyrolysis: Co-pyrolysis of amino acids and cellulose, hemicellulose and lignin. Proceedings of the Combustion Institute, 2011, 33(2): 1715–1722
https://doi.org/10.1016/j.proci.2010.06.033
54 J Jiang , Q Wang , Y Wang , W Tong , B Xiao , B Xiao . GC/MS analysis of coal tar composition produced from coal pyrolysis. Bulletin of the Chemical Society of Ethiopia, 2007, 21(2): 229–240
https://doi.org/10.4314/bcse.v21i2.21202
[1] FCE-23104-OF-WZ_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed