Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2024, Vol. 18 Issue (6): 68   https://doi.org/10.1007/s11705-024-2426-0
  本期目录
Segregation of binary particles in gas-solid fluidized bed
Yaxiong Yu1, Feng Lu1, Xuan He2, Fei Wei1,3, Chenxi Zhang1,3,4()
1. Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
2. School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
3. Ordos Laboratory, Ordos 017010, China
4. Institute for Carbon Neutrality, Tsinghua University, Beijing 100084, China
 全文: PDF(837 KB)   HTML
Abstract

Particle segregation and mixing behavior play a crucial role in industrial processes. This study investigates the saturated jetsam fraction, which indicates the maximum capacity of flotsam to entrain jetsam, in an initially separated binary fluidized bed with particle size differences. According to the value of saturated jetsam fraction, three distinct regimes—segregation, mixing, and an intermediate regime—are identified. Moreover, intriguing relationships between the saturated jetsam fraction and superficial gas velocity are observed, exhibiting monotonic trends in both the segregation and mixing regimes, while a unique volcano-shaped curve in the intermediate regime. Additionally, a comprehensive entrainment model based on two-fluid model elucidates the observed phenomena, emphasizing the significance of mixing behavior in fluidized layer on the saturated jetsam fraction. This work offers potential insights for evaluating segregation in industrial applications.

Key wordsfluidized bed    segregation    binary    bubbles    entrainment
收稿日期: 2023-12-13      出版日期: 2024-05-14
Corresponding Author(s): Chenxi Zhang   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2024, 18(6): 68.
Yaxiong Yu, Feng Lu, Xuan He, Fei Wei, Chenxi Zhang. Segregation of binary particles in gas-solid fluidized bed. Front. Chem. Sci. Eng., 2024, 18(6): 68.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-024-2426-0
https://academic.hep.com.cn/fcse/CN/Y2024/V18/I6/68
Fig.1  
Fig.2  
1 N Burtally , P King , M R Swift . Spontaneous air-driven separation in vertically vibrated fine granular mixtures. Science, 2002, 295(5561): 1877–1879
https://doi.org/10.1126/science.1066850
2 J Javier Brey , F Moreno , R Garcia-Rojo , M J Ruiz-Montero . Hydrodynamic maxwell demon in granular systems. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 2001, 65(1): 011305
https://doi.org/10.1103/PhysRevE.65.011305
3 C P McLaren , T M Kovar , A Penn , C R Müller , C M Boyce . Gravitational instabilities in binary granular materials. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(19): 9263–9268
https://doi.org/10.1073/pnas.1820820116
4 J E Galvin , S R Dahl , C M Hrenya . On the role of non-equipartition in the dynamics of rapidly flowing granular mixtures. Journal of Fluid Mechanics, 2005, 528: 207–232
https://doi.org/10.1017/S002211200400326X
5 Y Yu , F Lu , H Bai , F Wei , C Zhang . Discovery of asymmetric distribution of fine particles in fluidization using signal deflection reconstruction measurement. Chemical Engineering Science, 2024, 285: 119564
https://doi.org/10.1016/j.ces.2023.119564
6 Z Jiang , T Tsuji , J Oshitani , K Washino , T Tanaka . Reverse to forward density segregation depending on gas inflow velocity in vibrated fluidized beds. Physics of Fluids, 2023, 35(3): 033313
https://doi.org/10.1063/5.0138556
7 F P Di Maio , A Di Renzo , V Vivacqua . Extension and validation of the particle segregation model for bubbling gas-fluidized beds of binary mixtures. Chemical Engineering Science, 2013, 97: 139–151
https://doi.org/10.1016/j.ces.2013.04.012
8 Y Yu , F Lu , H Bai , F Wei , C Zhang . Effect of fines addition on heat transfer performance in gas-solid fluidized bed: an integrated experimental, simulation, and theoretical study. Chemical Engineering Journal, 2023, 476: 146806
https://doi.org/10.1016/j.cej.2023.146806
9 B Du , L S Fan , F Wei , W Warsito . Gas and solids mixing in a turbulent fluidized bed. AIChE Journal, 2002, 48(9): 1896–1909
https://doi.org/10.1002/aic.690480907
10 J L P Chen , D L Keairns . Particle segregation in a fluidized bed. Canadian Journal of Chemical Engineering, 1975, 53(4): 395–402
https://doi.org/10.1002/cjce.5450530407
11 F Duan , L Zhao , X Chen , Q Zhou . Fluid-particle drag and particle-particle drag in low-reynolds-number bidisperse gas-solid suspensions. Physics of Fluids, 2020, 32(11): 113311
https://doi.org/10.1063/5.0023874
12 M Mehrabadi , S Tenneti , S Subramaniam . Importance of the fluid-particle drag model in predicting segregation in bidisperse gas-solid flow. International Journal of Multiphase Flow, 2016, 86: 99–114
https://doi.org/10.1016/j.ijmultiphaseflow.2016.07.006
13 J M N T Gray . Particle segregation in dense granular flows. Annual Review of Fluid Mechanics, 2018, 50(1): 407–433
https://doi.org/10.1146/annurev-fluid-122316-045201
14 S Kennedy , R Bretton . Axial dispersion of spheres fluidized with liquids. AIChE Journal, 1966, 12(1): 24–30
https://doi.org/10.1002/aic.690120108
15 F Duan , Y Yu , X Chen , Q Zhou . Particle-particle drag force in inertial bidisperse gas-particle suspensions. Journal of Fluid Mechanics, 2022, 952: A11
https://doi.org/10.1017/jfm.2022.874
16 K Shi , M He , L Zhang , B Zhao , J Wang . Critical comparison of polydisperse kinetic theories using bidisperse dem data. Chemical Engineering Science, 2022, 263: 118062
https://doi.org/10.1016/j.ces.2022.118062
17 A Hoffmann , L Janssen , J Prins . Particle segregation in fluidised binary mixtures. Chemical Engineering Science, 1993, 48(9): 1583–1592
https://doi.org/10.1016/0009-2509(93)80118-A
18 L G Gibilaro , P N Rowe . A model for a segregating gas fluidised bed. Chemical Engineering Science, 1974, 29(6): 1403–1412
https://doi.org/10.1016/0009-2509(74)80164-8
19 D Kunii , O Levenspiel . Bubbling bed model. Model for flow of gas through a fluidized bed. Industrial & Engineering Chemistry Fundamentals, 1968, 7(3): 446–452
https://doi.org/10.1021/i160027a016
20 L T Fan , Y Chang . Mixing of large particles in two-dimensional gas fluidized beds. Canadian Journal of Chemical Engineering, 1979, 57(1): 88–97
https://doi.org/10.1002/cjce.5450570114
21 H Moritomi , T Yamagishi , T Chiba . Prediction of complete mixing of liquid-fluidized binary solid particles. Chemical Engineering Science, 1986, 41(2): 297–305
https://doi.org/10.1016/0009-2509(86)87010-5
22 J W Chew , C M Hrenya . Link between bubbling and segregation patterns in gas-fluidized beds with continuous size distributions. AIChE Journal, 2011, 57(11): 3003–3011
https://doi.org/10.1002/aic.12507
23 J W Chew , J R Wolz , C M Hrenya . Axial segregation in bubbling gas-fluidized beds with gaussian and lognormal distributions of geldart group B particles. AIChE Journal, 2010, 56(12): 3049–3061
https://doi.org/10.1002/aic.12219
24 D Geldart , J Baeyens , D Pope , P Van De Wijer . Segregation in beds of large particles at high velocities. Powder Technology, 1981, 30(2): 195–205
https://doi.org/10.1016/0032-5910(81)80012-5
25 B Formisani , R Girimonte , T Longo . The fluidization process of binary mixtures of solids: development of the approach based on the fluidization velocity interval. Powder Technology, 2008, 185(2): 97–108
https://doi.org/10.1016/j.powtec.2007.10.003
26 G Olivieri , A Marzocchella , P Salatino . Segregation of fluidized binary mixtures of granular solids. AIChE Journal, 2004, 50(12): 3095–3106
https://doi.org/10.1002/aic.10340
27 A Marzocchella , P Salatino , V Di Pastena , L Lirer . Transient fluidization and segregation of binary mixtures of particles. AIChE Journal, 2000, 46(11): 2175–2182
https://doi.org/10.1002/aic.690461110
28 A Rao , J S Curtis , B C Hancock , C Wassgren . Classifying the fluidization and segregation behavior of binary mixtures using particle size and density ratios. AIChE Journal, 2011, 57(6): 1446–1458
https://doi.org/10.1002/aic.12371
29 C Zhang , P Li , C Lei , W Qian , F Wei . Experimental study of non-uniform bubble growth in deep fluidized beds. Chemical Engineering Science, 2018, 176: 515–523
https://doi.org/10.1016/j.ces.2017.10.006
30 J X Bouillard , D Gidaspow . On the origin of bubbles and geldart’s classification. Powder Technology, 1991, 68(1): 13–22
https://doi.org/10.1016/0032-5910(91)80059-R
31 G I Taylor . The formation of a blast wave by a very intense explosion i: theoretical discussion. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1950, 201(1065): 159–174
https://doi.org/10.1098/rspa.1950.0049
32 G I Taylor . The formation of a blast wave by a very intense explosion. ii. The atomic explosion of 1945. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1950, 201(1065): 175–186
https://doi.org/10.1098/rspa.1950.0050
33 M A Avillez , M M Mac Low . Mushroom-shaped structures as tracers of buoyant flow in the galactic disk. Astrophysical Journal, 2001, 551(1): L57–L61
https://doi.org/10.1086/319842
34 Y A Alghamdi , Z Peng , Z Almutairi , H Alibrahim , F M Al-Alweet , B Moghtaderi , E Doroodchi . Assessment of correlations for minimum fluidization velocity of binary mixtures of particles in gas fluidized beds. Powder Technology, 2021, 394: 1231–1239
https://doi.org/10.1016/j.powtec.2021.09.035
35 R Andreux , T Gauthier , J Chaouki , O Simonin . New description of fluidization regimes. AIChE Journal, 2005, 51(4): 1125–1130
https://doi.org/10.1002/aic.10380
[1] FCE-23105-OF-YY_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed