Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2024, Vol. 18 Issue (7): 76   https://doi.org/10.1007/s11705-024-2432-2
  本期目录
Constructing hierarchical ZSM-5 coated with small ZSM-5 crystals via oriented-attachment and in situ assembly for methanol-to-aromatics reaction
Ning Yang, Tingjun Fu(), Chuntao Cao, Xueqing Wu, Huiling Zheng, Zhong Li
State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, China
 全文: PDF(1969 KB)   HTML
Abstract

Developing hierarchical and nanoscale ZSM-5 catalysts for diffusion-limited reactions has received ever-increasing attention. Here, ZSM-5 architecture integrated with hierarchical pores and nanoscale crystals was successfully prepared via in situ self-assembly of nanoparticles-coated silicalite-1. First, the oriented attachment of amorphous nanoparticles on external surface of silicalite-1 was achieved by controlling the alkalinity of Si-Al coating solution. The partial exposure of the external surface of silicalite-1 ensured the uniform removal of silicon in the bulk phase for the creation of hierarchical pores during the subsequent desilication-recrystallization. The uniform removal of silicon species in the bulk phase was mainly due to the synergistic effect of surface protection and alkaline etching, which could be balanced by regulating the relative amount of tetrapropylammonium cation and OH in desilication-recrystallization solution. Importantly, the removed silicon from silicalite-1 recrystallized and in situ assembled into final ZSM-5 nanocrystals induced by surface Si-Al nanoparticles. The hierarchical pores and nanoscale crystals on this integrated architecture not only promoted the removal of coke precursors from micropores but also provided large external specific surface (91 m2·g–1) for coke deposition. Consequently, a much longer catalytic lifetime was achieved for methanol-to-aromatics reaction compared to conventional hollow structure ZSM-5 (84 h vs 46 h), with relatively high stability.

Key wordshierarchical ZSM-5    nanocrystal    integrated architecture    diffusion    coke
收稿日期: 2023-11-11      出版日期: 2024-05-27
Corresponding Author(s): Tingjun Fu   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2024, 18(7): 76.
Ning Yang, Tingjun Fu, Chuntao Cao, Xueqing Wu, Huiling Zheng, Zhong Li. Constructing hierarchical ZSM-5 coated with small ZSM-5 crystals via oriented-attachment and in situ assembly for methanol-to-aromatics reaction. Front. Chem. Sci. Eng., 2024, 18(7): 76.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-024-2432-2
https://academic.hep.com.cn/fcse/CN/Y2024/V18/I7/76
Fig.1  
Fig.2  
SampleSurface area/(m2·g–1)Pore volume/(cm3·g–1)Relative crystallinity/%
SBETa)Smicrob)Sexterc)Vtotald)Vmicroe)Vmesof)
S-1@NZ53752551200.420.120.3042
HIZ@NZ5384304800.510.150.3689
S-1@Z5360341190.220.160.06100
HOZ5383355280.340.160.1882
Tab.1  
Fig.3  
Desilication- recrystallization conditionsSurface area/(m2·g–1)Pore volume/(cm3·g–1)
SBETSmicroSexterVtotalVmicroVmeso
0.15 mol·L–1343311310.340.160.18
0.15 mol·L–1 + 0.15 mol·L–1367334330.420.170.23
0.30 mol·L–1384304800.510.150.36
Tab.2  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
1 N Rahimi , R Karimzadeh . Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: a review. Applied Catalysis A, General, 2011, 398(1–2): 1–17
https://doi.org/10.1016/j.apcata.2011.03.009
2 R Wang , Y Gong , P Wang , W He , Y Song , M Xin , Q Jiang , Y Sha , T Cao , H Song , W Lin . In situ crystal engineering on 3D-printed woodpile scaffolds: a monolith catalyst with highly accessible active sites for enhanced catalytic cracking. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2023, 11(26): 13945–13955
https://doi.org/10.1039/D3TA01645E
3 S M Alipour . Recent advances in naphtha catalytic cracking by nano ZSM-5: a review. Chinese Journal of Catalysis, 2016, 37(5): 671–680
https://doi.org/10.1016/S1872-2067(15)61091-9
4 S Suganuma , K Nakamura , A Okuda , N Katada . Enhancement of catalytic activity for toluene disproportionation by loading Lewis acidic nickel species on ZSM-5 zeolite. Molecular Catalysis, 2017, 435: 110–117
https://doi.org/10.1016/j.mcat.2017.03.029
5 N Liu , X Zhu , S Hua , D Guo , H Yue , B Xue , Y Li . A facile strategy for preparation of phosphorus modified HZSM-5 shape-selective catalysts and its performances in disproportionation of toluene. Catalysis Communications, 2016, 77: 60–64
https://doi.org/10.1016/j.catcom.2016.01.027
6 L Miao , Z Hong , X Wang , W Jia , G Zhao , Y Huang , Z Zhu . Catalytic synergistic effect of bis-ZSM-5 zeolite with different crystal sizes for xylene isomerization. Microporous and Mesoporous Materials, 2022, 332: 111718
https://doi.org/10.1016/j.micromeso.2022.111718
7 J Hao , P Feng , F Xin , Z Wang , Z Zhou , D Bao , Z Zhu . A comprehensive kinetics for p-xylene increment by isomerizing C8 aromatics over Pt/HZSM-5. Chemical Engineering Science, 2023, 268: 118425
https://doi.org/10.1016/j.ces.2022.118425
8 J Zhang , A Zhou , K Gawande , G Li , S Shang , C Dai , W Fan , Y Han , C Song , L Ren , A Zhang , X Guo . b-Axis-Oriented ZSM-5 nanosheets for efficient alkylation of benzene with methanol: synergy of acid sites and diffusion. ACS Catalysis, 2023, 13(6): 3794–3805
https://doi.org/10.1021/acscatal.2c06384
9 Y Wang , X He , F Yang , Z Su , X Zhu . Control of framework aluminum distribution in MFI channels on the catalytic performance in alkylation of benzene with methanol. Industrial & Engineering Chemistry Research, 2020, 59(30): 13420–13427
https://doi.org/10.1021/acs.iecr.0c00366
10 Z Yan , D Chen , L Huang , J Liu , H Fu , Y Xiao , S Li . A theoretical insight into diffusion mechanism of benzene-methanol alkylation reaction in ZSM-5 zeolite. Microporous and Mesoporous Materials, 2022, 337: 111926
https://doi.org/10.1016/j.micromeso.2022.111926
11 J Li , M Liu , X Guo , S Xu , Y Wei , Z Liu , C Song . Interconnected hierarchical ZSM-5 with tunable acidity prepared by a dealumination–realumination process: a superior MTP catalyst. ACS Applied Materials & Interfaces, 2017, 9(31): 26096–26106
https://doi.org/10.1021/acsami.7b07806
12 Z Liu , D Wu , S Ren , X Chen , M Qiu , G Liu , G Zeng , Y Sun . Facile one-pot solvent-free synthesis of hierarchical ZSM-5 for methanol to gasoline conversion. RSC Advances, 2016, 6(19): 15816–15820
https://doi.org/10.1039/C6RA00247A
13 P Liu , J Wang , L Ling , X Shen , X Li , R Zhang , B Wang . Suitable location of Lewis acid over ZnOH+/HZSM-5 catalysts effectively enhance dehydrogenation activity and catalyze the aromatization process of C6 olefins in MTA. Fuel, 2024, 357: 130000
https://doi.org/10.1016/j.fuel.2023.130000
14 B Bensafi , N Chouat , F Djafri . The universal zeolite ZSM-5: structure and synthesis strategies: a review. Coordination Chemistry Reviews, 2023, 496: 215397
https://doi.org/10.1016/j.ccr.2023.215397
15 P Peng , X Gao , Z Yan , S Mintova . Diffusion and catalyst efficiency in hierarchical zeolite catalysts. National Science Review, 2020, 7(11): 1726–1742
https://doi.org/10.1093/nsr/nwaa184
16 H Zhang , I B Samsudin , S Jaenicke , G K Chuah . Zeolites in catalysis: sustainable synthesis and its impact on properties and applications. Catalysis Science & Technology, 2022, 12(19): 6024–6039
https://doi.org/10.1039/D2CY01325H
17 D Kerstens , B Smeyers , J Van Waeyenberg , Q Zhang , J Yu , B F Sels . State of the art and perspectives of hierarchical zeolites: practical overview of synthesis methods and use in catalysis. Advanced Materials, 2020, 32(44): 2004690
https://doi.org/10.1002/adma.202004690
18 S Li , H Yang , S Wang , J Wang , W Fan , M Dong . Improvement of adsorption and catalytic properties of zeolites by precisely controlling their particle morphology. Chemical Communications (Cambridge), 2022, 58(13): 2041–2054
https://doi.org/10.1039/D1CC05537B
19 J Grand , S N Talapaneni , A Vicente , C Fernandez , E Dib , H A Aleksandrov , G N Vayssilov , R Retoux , P Boullay , J P Gilson , V Valtchev , S Mintova . One-pot synthesis of silanol-free nanosized MFI zeolite. Nature Materials, 2017, 16(10): 1010–1015
https://doi.org/10.1038/nmat4941
20 E Kianfar . Nanozeolites: synthesized, properties, applications. Journal of Sol-Gel Science and Technology, 2019, 91(2): 415–429
https://doi.org/10.1007/s10971-019-05012-4
21 W Zhang , X Bao , X Guo , X Wang . A high-resolution solid-state NMR study on nano-structured HZSM-5 zeolite. Catalysis Letters, 1999, 60(1): 89–94
https://doi.org/10.1023/A:1019061714047
22 Z Wan , G K Li , C Wang , H Yang , D Zhang . Relating coke formation and characteristics to deactivation of ZSM-5 zeolite in methanol to gasoline conversion. Applied Catalysis A, General, 2018, 549: 141–151
https://doi.org/10.1016/j.apcata.2017.09.035
23 S Kim , G Park , M H Woo , G Kwak , S K Kim . Control of hierarchical structure and framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on methanol conversion. ACS Catalysis, 2019, 9(4): 2880–2892
https://doi.org/10.1021/acscatal.8b04493
24 A Javdani , J Ahmadpour , F Yaripour . Nano-sized ZSM-5 zeolite synthesized via seeding technique for methanol conversions: a review. Microporous and Mesoporous Materials, 2019, 284: 443–458
https://doi.org/10.1016/j.micromeso.2019.04.063
25 C Li , M Moliner , A Corma . Building zeolites from precrystallized units: nanoscale architecture. Angewandte Chemie International Edition, 2018, 57(47): 15330–15353
https://doi.org/10.1002/anie.201711422
26 R Jain , A J Mallette , J D Rimer . Controlling nucleation pathways in zeolite crystallization: seeding conceptual methodologies for advanced materials design. Journal of the American Chemical Society, 2021, 143(51): 21446–21460
https://doi.org/10.1021/jacs.1c11014
27 H Mochizuki , T Yokoi , H Imai , S Namba , J N Kondo , T Tatsumi . Effect of desilication of H-ZSM-5 by alkali treatment on catalytic performance in hexane cracking. Applied Catalysis A, General, 2012, 449: 188–197
https://doi.org/10.1016/j.apcata.2012.10.003
28 L Chen , M Sun , Z Wang , W Yang , Z Xie , B L Su . Hierarchically structured zeolites: from design to application. Chemical Reviews, 2020, 120(20): 11194–11294
https://doi.org/10.1021/acs.chemrev.0c00016
29 Y Jiao , L Forster , S Xu , H Chen , J Han , X Liu , Y Zhou , J Liu , J Zhang , J Yu , C D’Agostino , X Fan . Creation of Al-enriched mesoporous ZSM-5 nanoboxes with high catalytic activity: converting tetrahedral extra-framework Al into framework sites by post treatment. Angewandte Chemie International Edition, 2020, 59(44): 19478–19486
https://doi.org/10.1002/anie.202002416
30 C Dai , A Zhang , L Li , K Hou , F Ding , J Li , D Mu , C Song , M Liu , X Guo . Synthesis of hollow nanocubes and macroporous monoliths of silicalite-1 by alkaline treatment. Chemistry of Materials, 2013, 25(21): 4197–4205
https://doi.org/10.1021/cm401739e
31 C Dai , A Zhang , J Li , K Hou , M Liu , C Song , X Guo . Synthesis of yolk-shell HPW@Hollow silicalite-1 for esterification reaction. Chemical Communications, 2014, 50(37): 4846–4848
https://doi.org/10.1039/c4cc00693c
32 C Dai , A Zhang , M Liu , L Gu , X Guo , C Song . Hollow alveolus-like nanovesicle assembly with metal-encapsulated hollow zeolite nanocrystals. ACS Nano, 2016, 10(8): 7401–7408
https://doi.org/10.1021/acsnano.6b00888
33 C Dai , A Zhang , M Liu , X Guo , C Song . Hollow ZSM-5 with silicon-rich surface, double shells, and functionalized interior with metallic nanoparticles and carbon nanotubes. Advanced Functional Materials, 2015, 25(48): 7479–7487
https://doi.org/10.1002/adfm.201502980
34 N Ren , Z Yang , X Lv , J Shi , Y H Zhang , Y Tang . A seed surface crystallization approach for rapid synthesis of submicron ZSM-5 zeolite with controllable crystal size and morphology. Microporous and Mesoporous Materials, 2010, 131(1–3): 103–114
https://doi.org/10.1016/j.micromeso.2009.12.009
35 Y Zhai , X Zhang , F Wang , G Lv , T Jiang , Y Wu , M Li , M Li , Q Zhang , Y Liu . Racing crystallization mechanism for economical design of single-crystal hollow ZSM-5 with the broken limit of Si/Al ratio and improved mass transfer. ACS Applied Materials & Interfaces, 2021, 13(13): 15246–15260
https://doi.org/10.1021/acsami.1c00768
36 X Ou , S Xu , J M Warnett , S M Holmes , A Zaheer , A A Garforth , M A Williams , Y Jiao , X Fan . Creating hierarchies promptly: microwave-accelerated synthesis of ZSM-5 zeolites on macrocellular silicon carbide (SiC) foams. Chemical Engineering Journal, 2017, 312: 1–9
https://doi.org/10.1016/j.cej.2016.11.116
37 N Wang , J Li , W Sun , Y Hou , L Zhang , X Hu , Y Yang , X Chen , C Chen , B Chen , W Qian . Rational design of zinc/zeolite catalyst: selective formation of p-xylene from methanol to aromatics reaction. Angewandte Chemie International Edition, 2022, 61(10): e202201057
https://doi.org/10.1002/anie.202201057
38 S Li , J Li , M Dong , S Fan , T Zhao , J Wang , W Fan . Strategies to control zeolite particle morphology. Chemical Society Reviews, 2019, 48(3): 885–907
https://doi.org/10.1039/C8CS00774H
[1] FCE-23111-OF-YN_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed