Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2024, Vol. 18 Issue (7): 78   https://doi.org/10.1007/s11705-024-2433-1
  本期目录
Degradation pathways of amino acids during thermal utilization of biomass: a review
Mubarak Al-Kwradi, Mohammednoor Altarawneh()
Department of Chemical and Petroleum Engineering, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
 全文: PDF(3650 KB)   HTML
Abstract

Amino acids are important nitrogen carriers in biomass and entail a broad spectrum of industrial uses, most notably as food additives, pharmaceutical ingredients, and raw materials for bio-based plastics. Attaining detailed information in regard to the fragmentation of amino acids is essential to comprehend the nitrogen transformation chemistry at conditions encountered during hydrothermal and pyrolytic degradation of biomass. The underlying aim of this review is to survey literature studies pertinent to the complex structures of amino acids, their formation yields from various categories of biomass, and their fragmentation routes at elevated temperatures and in the aqueous media. Two predominant degradation reactions ensue in the decomposition of amino acids, namely deamination and decarboxylation. Notably, minor differences in structure can greatly affect the fate for each amino acid. Moreover, amino acids, being nitrogen-rich compounds, play pivotal roles across various fields. There is a growing interest in producing varied types and configurations of amino acids. Microbial fermentation appears to a viable approach to produce amino acids at an industrial scale. One innovative method under investigation is catalytic synthesis using renewable biomass as feedstocks. Such a method taps into the inherent nitrogen in biomass sources like chitin and proteins, eliminating the need for external nitrogen sources. This environmentally friendly approach is in line with green chemistry principles and has been gathering momentum in the scientific community.

Key wordsamino acids    pyrolysis    biomass    nitrogen    mechanisms    bioenergy
收稿日期: 2023-12-27      出版日期: 2024-05-27
Corresponding Author(s): Mohammednoor Altarawneh   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2024, 18(7): 78.
Mubarak Al-Kwradi, Mohammednoor Altarawneh. Degradation pathways of amino acids during thermal utilization of biomass: a review. Front. Chem. Sci. Eng., 2024, 18(7): 78.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-024-2433-1
https://academic.hep.com.cn/fcse/CN/Y2024/V18/I7/78
  
Fig.1  
Fig.2  
  
Fig.3  
  
Fig.4  
  
Fig.5  
  
Fig.6  
  
Fig.7  
  
  
Fig.8  
Amino acidRef.T/°CP/MPaRXN time/minA/s?1Ea/kJ·mol?1
Alanine[108]250?33015?270.5?1.56.9 × 1010134.1
[109]200?2401.8?3.45?303.3 × 10794.0
[104]152?216Psat5.5 (days)3.0 × 1013184.0
[110]230?290Psat2.5?404.5 × 10593.2
[111]270?34027.50.55.8 × 1014190.6
[101]200?34020.00.3?32.7 × 1012154.0
[112]250?45024?340.04?0.63.6 × 1011160.0
Glycine[108]250?330Psat2.5?401.3 × 1013169.8
[110]230?29027.50.59.3 × 1010138.4
[111]270?34020.00.3?33.5 × 1013166.0
[101]200?34024?340.04?0.61.4 × 1012156.0
[112]250?45015?270.5?1.56.9 × 1010134.1
Isoleucine[110]230?290Psat2.5?401.3 × 10583.1
Leucine[110]230?290Psat2.5?401.5 × 1010138.5
[111]270?34027.50.56.1 × 1010141.9
Phenylalanine[111]270?34027.50.51.9 × 1013171.0
[100]220?350Psat0?2402.5 × 1012144.0
[113]130?190Psat5?2401.2 × 1015170.0
Serine[104]152?216Psat5.5 (days)4.0 × 109122.8
[110]230?290Psat2.5?406.1 × 108112.2
[111]270?34027.50.51.4 × 109110.9
[101]200?34020.00.3?39.9 × 1012149.0
Threonine[104]113?200Psat370 (days)2.0 × 1012141.4
[111]270?34027.50.58.3 × 1011142.1
Valine[110]230?290Psat2.5?403.7 × 1011157.0
[111]270?34027.50.53.8 × 1014185.6
Tab.1  
  
  
  
Fig.9  
Fig.10  
  
Fig.11  
  
  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
Fig.16  
Fig.17  
Fig.18  
1 P Wang , C Shu , H Ye , M Biczysko . Structural and energetic properties of amino acids and peptides benchmarked by accurate theoretical and experimental data. Journal of Physical Chemistry A, 2021, 125(45): 9826–9837
https://doi.org/10.1021/acs.jpca.1c06504
2 C Y Lee , J T Chen , W T Chang , I M Shiah . Effect of pH on the solubilities of divalent and trivalent amino acids in water at 298.15 K. Fluid Phase Equilibria, 2013, 343(1): 30–35
https://doi.org/10.1016/j.fluid.2013.01.010
3 A A Pradhan , J H Vera . Effect of acids and bases on the solubility of amino acids. Fluid Phase Equilibria, 1998, 152(1): 121–132
https://doi.org/10.1016/S0378-3812(98)00387-2
4 J Lara-Popoca , H S Thoke , R P Stock , E Rudino-Pinera , L A Bagatolli . Inductive effects in amino acids and peptides: ionization constants and tryptophan fluorescence. Biochemistry and Biophysics Reports, 2020, 24(1): 100802
https://doi.org/10.1016/j.bbrep.2020.100802
5 N A Bowden , J P M Sanders , M E Bruins . Solubility of the proteinogenic α-amino acids in water, ethanol, and ethanol-ater mixtures. Journal of Chemical & Engineering Data, 2018, 63(3): 488–497
https://doi.org/10.1021/acs.jced.7b00486
6 E V Petrotchenko , C H Borchers . Protein chemistry combined with mass spectrometry for protein structure determination. Chemical Reviews, 2022, 122(8): 7488–7499
https://doi.org/10.1021/acs.chemrev.1c00302
7 H Nakashima , K Nishikawa . Discrimination of intracellular and extracellular proteins using amino acid composition and residue-pair frequencies. Journal of Molecular Biology, 1994, 238(1): 54–61
https://doi.org/10.1006/jmbi.1994.1267
8 A A Rosenkranz , T A Slastnikova . Prospects of using protein engineering for selective drug delivery into a specific compartment of target cells. Pharmaceutics, 2023, 15(3): 987
https://doi.org/10.3390/pharmaceutics15030987
9 E J Stollar , D P Smith . Uncovering protein structure. Essays in Biochemistry, 2020, 64(4): 649–680
https://doi.org/10.1042/EBC20190042
10 A Kirschning . On the evolutionary history of the twenty encoded amino acids. Chemistry, 2022, 28(55): e202201419
https://doi.org/10.1002/chem.202201419
11 Q Xu , H Deng , X Li , Z S Quan . Application of amino acids in the structural modification of natural products: a review. Frontiers in Chemistry, 2021, 9(1): 1–26
https://doi.org/10.3389/fchem.2021.650569
12 Y Huang , X Ji , Z Ma , M Łężyk , Y Xue , H Zhao . Green chemical and biological synthesis of cadaverine: recent development and challenges. RSC Advances, 2021, 11(39): 23922–23942
https://doi.org/10.1039/D1RA02764F
13 K Liu , B Shao , B Zheng , B Zong . Catalytic production of functional monomers from lysine and their application in high-valued polymers. Catalysts, 2022, 13(1): 56
https://doi.org/10.3390/catal13010056
14 G Haeger , T Jolmes , S Oyen , K E Jaeger , J Bongaerts , U Schörken , P Siegert . Novel recombinant aminoacylase from Paraburkholderia monticola capable of N-acyl-amino acid synthesis. Applied Microbiology and Biotechnology, 2024, 108(1): 93
https://doi.org/10.1007/s00253-023-12868-8
15 K Heieck , N D Arnold , T B Brück . Metabolic stress constrains microbial L-cysteine production in Escherichia coli by accelerating transposition through mobile genetic elements. Microbial Cell Factories, 2023, 22(1): 10
https://doi.org/10.1186/s12934-023-02021-5
16 M D’Este , M Alvarado-Morales , I Angelidaki . Amino acids production focusing on fermentation technologies: a review. Biotechnology Advances, 2018, 36(1): 14–25
https://doi.org/10.1016/j.biotechadv.2017.09.001
17 H Cheng , X Zhu , C Zhu , J Qian , N Zhu , L Zhao , J Chen . Hydrolysis technology of biomass waste to produce amino acids in sub-critical water. Bioresource Technology, 2008, 99(9): 3337–3341
https://doi.org/10.1016/j.biortech.2007.08.024
18 M Goto , R Obuchi , T Hirose , T Sakaki , M Shibata . Hydrothermal conversion of municipal organic waste into resources. Bioresource Technology, 2004, 93(3): 279–284
https://doi.org/10.1016/j.biortech.2003.11.017
19 B Klejdus , L Lojková , E Kula , I Buchta , P Hrdlička , V Kubáň . Supercritical fluid extraction of amino acids from birch (Betula pendula Roth) leaves and their liquid chromatographic determination with fluorimetric detection. Journal of Separation Science, 2008, 31(8): 1363–1373
https://doi.org/10.1002/jssc.200700560
20 O Pourali , F S Asghari , H Yoshida . Sub-critical water treatment of rice bran to produce valuable materials. Food Chemistry, 2009, 115(1): 1–7
https://doi.org/10.1016/j.foodchem.2008.11.099
21 I Sereewatthanawut , S Prapintip , K Watchiraruji , M Goto , M Sasaki , A Shotipruk . Extraction of protein and amino acids from deoiled rice bran by subcritical water hydrolysis. Bioresource Technology, 2008, 99(3): 555–561
https://doi.org/10.1016/j.biortech.2006.12.030
22 S W Duchiron , E Pollet , S Givry , L Avérous . Enzymatic synthesis of amino acids endcapped polycaprolactone: a green route towards functional polyesters. Molecules, 2018, 23(2): 290
https://doi.org/10.3390/molecules23020290
23 F Grasso , D Méndez-Paz , Sobrado R Vázquez , V Orlandi , F Turrini , Negri Atanasio G De , E Grasselli , M Tiso , R Boggia . Feasibility of enzymatic protein extraction from a dehydrated fish biomass obtained from unsorted canned yellowfin tuna side streams: Part I. Gels, 2023, 9(9): 760
https://doi.org/10.3390/gels9090760
24 A J Wagner , D Y Zubarev , A Aspuru-Guzik , D G Blackmond . Chiral sugars drive enantioenrichment in prebiotic amino acid synthesis. ACS Central Science, 2017, 3(4): 322–328
https://doi.org/10.1021/acscentsci.7b00085
25 A Schaberg , R Wroblowski , R Goertz . Comparative study of the thermal decomposition behaviour of different amino acids and peptides. Journal of Physics: Conference Series, 2018, 1107(3): 032013
https://doi.org/10.1088/1742-6596/1107/3/032013
26 P Körner . Hydrothermal degradation of amino acids. ChemSusChem, 2021, 14(22): 4947–4957
https://doi.org/10.1002/cssc.202101487
27 Y Jeong , H W Kim , J Ku , J Seo . Breakdown of chiral recognition of amino acids in reduced dimensions. Scientific Reports, 2020, 10(1): 16166
https://doi.org/10.1038/s41598-020-73300-z
28 M Inaki , J Liu , K Matsuno . Cell chirality: its origin and roles in left-right asymmetric development. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371(1710): 20150403
29 F Cava , H Lam , M A de Pedro , M K Waldor . Emerging knowledge of regulatory roles of D-amino acids in bacteria. Cellular and Molecular Life Sciences, 2011, 68(5): 817–831
https://doi.org/10.1007/s00018-010-0571-8
30 A Kühnle , T R Linderoth , B Hammer , F Besenbacher . Chiral recognition in dimerization of adsorbed cysteine observed by scanning tunnelling microscopy. Nature, 2002, 415(6874): 891–893
https://doi.org/10.1038/415891a
31 Q Chen , N V Richardson . Enantiomeric interactions between nucleic acid bases and amino acids on solid surfaces. Nature Materials, 2003, 2(5): 324–328
https://doi.org/10.1038/nmat878
32 G P Lopinski , D J Moffatt , D D M Wayner , R A Wolkow . Determination of the absolute chirality of individual adsorbed molecules using the scanning tunnelling microscope. Nature, 1998, 392(6679): 909–911
https://doi.org/10.1038/31913
33 J Zhang , B Li , X Cui , B Wang , J Yang , J G Hou . Spontaneous chiral resolution in supramolecular assembly of 2,4,6-tris(2-pyridyl)-1,3,5-triazine on Au(111). Journal of the American Chemical Society, 2009, 131(16): 5885–5890
https://doi.org/10.1021/ja9001986
34 M J Harms , C A Castañeda , J L Schlessman , G R Sue , D G Isom , B R Cannon , E B García-Moreno . The pK(a) values of acidic and basic residues buried at the same internal location in a protein are governed by different factors. Journal of Molecular Biology, 2009, 389(1): 34–47
https://doi.org/10.1016/j.jmb.2009.03.039
35 K K MehtaG Vedantham. Next-Generation Process Design for Monoclonal Antibody Purification, in Biopharmaceutical Processing. Jagschies G, Lindskog E, Łącki K, Galliher P, eds. Amsterdam: Elsevier, 2018, 793–811
36 C N Pace , G R Grimsley , J M Scholtz . Protein ionizable groups: pK values and their contribution to protein stability and solubility. Journal of Biological Chemistry, 2009, 284(20): 13285–13289
https://doi.org/10.1074/jbc.R800080200
37 G I Chipens , I Balodis , L E Gnilomedova . Polarity and hydropathic properties of natural amino acids. Ukrainskii Biokhimicheskii Zhurnal, 1991, 63(4): 20–29
38 C KalidasM V Sangaranarayanan. Amino Acids in Biophysical Chemistry: Techniques and Applications. Kalidas C, Sangaranarayanan M V, eds. Cham: Springer Nature Switzerland, 2023, 115–127
39 C SelvarajD C DineshK RajaramS SundaresanS K Singh. Macromolecular chemistry: an introduction. In: In Silico Approaches to Macromolecular Chemistry, Thomas M E, Thomas J, Thomas S, Kornweitz H, eds. Amsterdam: Elsevier, 2023, 71–128
40 M C Bellissent-Funel , A Hassanali , M Havenith , R Henchman , P Pohl , F Sterpone , D van der Spoel , Y Xu , A E Garcia . Water determines the structure and dynamics of proteins. Chemical Reviews, 2016, 116(13): 7673–7697
https://doi.org/10.1021/acs.chemrev.5b00664
41 S Melnikov , J Mailliot , L Rigger , S Neuner , B S Shin , G Yusupova , T E Dever , R Micura , M Yusupov . Molecular insights into protein synthesis with proline residues. EMBO Reports, 2016, 17(12): 1776–1784
https://doi.org/10.15252/embr.201642943
42 M H Stipanuk . Metabolism of sulfur-containing amino acids: how the body copes with excess methionine, cysteine, and sulfide. Journal of Nutrition, 2020, 150(1): 2494S–2505S
https://doi.org/10.1093/jn/nxaa094
43 L B Poole . The basics of thiols and cysteines in redox biology and chemistry. Free Radical Biology & Medicine, 2015, 80(1): 148–157
https://doi.org/10.1016/j.freeradbiomed.2014.11.013
44 M Kohlmeier. Nutrient Metabolism. 1st ed. London: Academic Press, 2003, 389–395
45 H A N El-Fawal. Neurotoxicology. In: Encyclopedia of Environmental Health (2nd Edition). Nriagu J ed. Oxford: Elsevier, 2011, 614–633
46 I André , S Linse , F A A Mulder . Residue-specific pKa determination of lysine and arginine side chains by indirect 15N and 13C NMR spectroscopy: application to apo calmodulin. Journal of the American Chemical Society, 2007, 129(51): 15805–15813
https://doi.org/10.1021/ja0721824
47 C Zhu , Y Gao , H Li , S Meng , L Li , J S Francisco , X C Zeng . Characterizing hydrophobicity of amino acid side chains in a protein environment via measuring contact angle of a water nanodroplet on planar peptide network. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(46): 12946–12951
https://doi.org/10.1073/pnas.1616138113
48 N V BhagavanC E Ha. Three-dimensional structure of proteins and disorders of protein misfolding. In: Essentials of Medical Biochemistry (2nd Edition), Bhagavan N V, Ha C E, Eds. San Diego: Academic Press, 2015, 31–51
49 J W Pelley. Protein Structure and Function, in Elsevier’s Integrated Biochemistry. Pelley J W, eds. Philadelphia: Mosby, 2007, 19–28
50 S Ogo , K Uehara , T Abura , S Fukuzumi . pH-Dependent chemoselective synthesis of α-amino acids. Reductive amination of α-keto acids with ammonia catalyzed by acid-stable iridium hydride complexes in water. Journal of the American Chemical Society, 2004, 126(10): 3020–3021
https://doi.org/10.1021/ja031633r
51 S J Zuend , M P Coughlin , M P Lalonde , E N Jacobsen . Scaleable catalytic asymmetric Strecker syntheses of unnatural α-amino acids. Nature, 2009, 461(7266): 968–970
https://doi.org/10.1038/nature08484
52 M Zhang , S Imm , S Bähn , H Neumann , M Beller . Synthesis of α-amino acid amides: ruthenium-catalyzed amination of α-hydroxy amides. Angewandte Chemie International Edition, 2011, 50(47): 11197–11201
https://doi.org/10.1002/anie.201104309
53 T Magrino , F Pietrucci , A M Saitta . Step by step strecker amino acid synthesis from ab initio prebiotic chemistry. Journal of Physical Chemistry Letters, 2021, 12(10): 2630–2637
https://doi.org/10.1021/acs.jpclett.1c00194
54 P Hu , Y Ben-David , D Milstein . General synthesis of amino acid salts from amino alcohols and basic water liberating H2. Journal of the American Chemical Society, 2016, 138(19): 6143–6146
https://doi.org/10.1021/jacs.6b03488
55 W Deng , Y Wang , S Zhang , K M Gupta , M J Hülsey , H Asakura , L Liu , Y Han , E M Karp , G T Beckham . et al.. Catalytic amino acid production from biomass-derived intermediates. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(20): 5093–5098
https://doi.org/10.1073/pnas.1800272115
56 B Xu , J Dai , Z Du , F Li , H Liu , X Gu , X Wang , N Li , J Zhao . Catalytic conversion of biomass-derived compounds to various amino acids: status and perspectives. Frontiers of Chemical Science and Engineering, 2023, 17(7): 817–829
https://doi.org/10.1007/s11705-022-2254-z
57 X Liu , Q Zhang , R Wang , H Li . Sustainable conversion of biomass-derived carbohydrates into lactic acid using heterogeneous catalysts. Current Green Chemistry, 2020, 7(3): 282–289
https://doi.org/10.2174/2213346106666191127123730
58 W Deng , P Wang , B Wang , Y Wang , L Yan , Y Li , Q Zhang , Z Cao , Y Wang . Transformation of cellulose and related carbohydrates into lactic acid with bifunctional Al(III)-Sn(II) catalysts. Green Chemistry, 2018, 20(3): 735–744
https://doi.org/10.1039/C7GC02975F
59 J Li , R Yang , S Xu , C Zhou , Y Xiao , C Hu , D C W Tsang . Biomass-derived polyols valorization towards glycolic acid production with high atom-economy. Applied Catalysis B: Environmental, 2022, 317(1): 121785
https://doi.org/10.1016/j.apcatb.2022.121785
60 E Sjöström . Carbohydrate degradation products from alkaline treatment of biomass. Biomass and Bioenergy, 1991, 1(1): 61–64
https://doi.org/10.1016/0961-9534(91)90053-F
61 Y Cao , D Chen , Y Meng , S Saravanamurugan , H Li . Visible-light-driven prompt and quantitative production of lactic acid from biomass sugars over a N-TiO2 photothermal catalyst. Green Chemistry, 2021, 23(24): 10039–10049
https://doi.org/10.1039/D1GC03057D
62 Y Wang , S Furukawa , S Song , Q He , H Asakura , N Yan . Catalytic production of alanine from waste glycerol. Angewandte Chemie International Edition, 2020, 59(6): 2289–2293
https://doi.org/10.1002/anie.201912580
63 S Xu , Q Tian , Y Xiao , W Zhang , S Liao , J Li , C Hu . Regulating the competitive reaction pathway in glycerol conversion to lactic acid/glycolic acid selectively. Journal of Catalysis, 2022, 413(1): 407–416
https://doi.org/10.1016/j.jcat.2022.07.003
64 M Besson , P Gallezot , C Pinel . Conversion of biomass into chemicals over metal catalysts. Chemical Reviews, 2014, 114(3): 1827–1870
https://doi.org/10.1021/cr4002269
65 C Li , X Zhao , A Wang , G W Huber , T Zhang . Catalytic transformation of lignin for the production of chemicals and fuels. Chemical Reviews, 2015, 115(21): 11559–11624
https://doi.org/10.1021/acs.chemrev.5b00155
66 R E Key , J J Bozell . Progress toward lignin valorization via selective catalytic technologies and the tailoring of biosynthetic pathways. ACS Sustainable Chemistry & Engineering, 2016, 4(10): 5123–5135
https://doi.org/10.1021/acssuschemeng.6b01319
67 R Xing , W Qi , G W Huber . Production of furfural and carboxylic acids from waste aqueous hemicellulose solutions from the pulp and paper and cellulosic ethanol industries. Energy & Environmental Science, 2011, 4(6): 2193–2205
https://doi.org/10.1039/c1ee01022k
68 F de Clippel , M Dusselier , R Van Rompaey , P Vanelderen , J Dijkmans , E Makshina , L Giebeler , S Oswald , G V Baron , J F M Denayer . et al.. Fast and selective sugar conversion to alkyl lactate and lactic acid with bifunctional carbon-silica catalysts. Journal of the American Chemical Society, 2012, 134(24): 10089–10101
https://doi.org/10.1021/ja301678w
69 R Weingarten , Y T Kim , G A Tompsett , A Fernández , K S Han , E W Hagaman , W C Jr Conner , J A Dumesic , G W Huber . Conversion of glucose into levulinic acid with solid metal(IV) phosphate catalysts. Journal of Catalysis, 2013, 304: 123–134
https://doi.org/10.1016/j.jcat.2013.03.023
70 E Anderson , R Katahira , M Reed , M Resch , E Karp , G Beckham , Y Roman-Leshkov . Reductive catalytic fractionation of corn stover lignin. ACS Sustainable Chemistry & Engineering, 2016, 4(12): 6940–6950
https://doi.org/10.1021/acssuschemeng.6b01858
71 Y S Choi , R Singh , J Zhang , G Balasubramanian , M R Sturgeon , R Katahira , G Chupka , G T Beckham , B H Shanks . Pyrolysis reaction networks for lignin model compounds: unraveling thermal deconstruction of β-O-4 and α-O-4 compounds. Green Chemistry, 2016, 18(6): 1762–1773
https://doi.org/10.1039/C5GC02268A
72 Z Tang , W Deng , Y Wang , E Zhu , X Wan , Q Zhang , Y Wang . Transformation of cellulose and its derived carbohydrates into formic and lactic acids catalyzed by vanadyl cations. ChemSusChem, 2014, 7(6): 1557–1567
https://doi.org/10.1002/cssc.201400150
73 F F Wang , C L Liu , W S Dong . Highly efficient production of lactic acid from cellulose using lanthanide triflate catalysts. Green Chemistry, 2013, 15(8): 2091–2095
https://doi.org/10.1039/c3gc40836a
74 L Li , F Shen , R L Smith , X Qi . Quantitative chemocatalytic production of lactic acid from glucose under anaerobic conditions at room temperature. Green Chemistry, 2017, 19(1): 76–81
https://doi.org/10.1039/C6GC02443B
75 H Kawaguchi , K Uematsu , C Ogino , H Teramura , S Nakamura , Y Tsuge , T Hasunuma , K I Oinuma , N Takaya , A Kondo . Simultaneous saccharification and fermentation of kraft pulp by recombinant Escherichia coli for phenyllactic acid production. Biochemical Engineering Journal, 2014, 88(1): 188–194
https://doi.org/10.1016/j.bej.2014.04.014
76 J Ralph . Hydroxycinnamates in lignification. Phytochemistry Reviews, 2010, 9(1): 65–83
https://doi.org/10.1007/s11101-009-9141-9
77 C Gunanathan , D Milstein . Selective synthesis of primary amines directly from alcohols and ammonia. Angewandte Chemie International Edition, 2008, 47(45): 8661–8664
https://doi.org/10.1002/anie.200803229
78 D Pingen , C Müller , D Vogt . Direct amination of secondary alcohols using ammonia. Angewandte Chemie International Edition, 2010, 49(44): 8130–8133
https://doi.org/10.1002/anie.201002583
79 A Tomer , F Wyrwalski , C Przybylski , J F Paul , E Monflier , M Pera-Titus , A Ponchel . Facile preparation of Ni/Al2O3 catalytic formulations with the aid of cyclodextrin complexes: towards highly active and robust catalysts for the direct amination of alcohols. Journal of Catalysis, 2017, 356: 111–124
https://doi.org/10.1016/j.jcat.2017.10.006
80 A Alshammari , K Murugesan . MOF-derived cobalt nanoparticles catalyze a general synthesis of amines. Science, 2017, 358(6361): 326–332
https://doi.org/10.1126/science.aan6245
81 A J Watson , J M Williams . The give and take of alcohol activation. Science, 2010, 329(5992): 635–636
https://doi.org/10.1126/science.1191843
82 N Tonouchi , H Ito . Present global situation of amino acids in industry. Advances in Biochemical Engineering/Biotechnology, 2017, 159(1): 3–14
83 Z Xie , B Chen , F Peng , M Liu , H Liu , G Yang , B Han . Highly efficient synthesis of amino acids by amination of bio-derived hydroxy acids with ammonia over Ru supported on N-doped carbon nanotubes. ChemSusChem, 2020, 13(21): 5683–5689
https://doi.org/10.1002/cssc.202001561
84 M Kitamura , D Lee , S Hayashi , S Tanaka , M Yoshimura . Catalytic Leuckart-Wallach-type reductive amination of ketones. Journal of Organic Chemistry, 2002, 67(24): 8685–8687
https://doi.org/10.1021/jo0203701
85 R Kadyrov , T H Riermeier , U Dingerdissen , V Tararov , A Börner . The first highly enantioselective homogeneously catalyzed asymmetric reductive amination: synthesis of alpha-N-benzylamino acids. Journal of Organic Chemistry, 2003, 68(10): 4067–4070
https://doi.org/10.1021/jo020690k
86 D P Nguyen , R N Sladek , L H Do . Scope and limitations of reductive amination catalyzed by half-sandwich iridium complexes under mild reaction conditions. Tetrahedron Letters, 2020, 61(32): 152–196
https://doi.org/10.1016/j.tetlet.2020.152196
87 A S C Chan , C C Chen , Y C Lin . Catalytic reductive amination of α-ketocaboxylic acids as a useful route to amino acids. Applied Catalysis A, General, 1994, 119(1): L1–L5
https://doi.org/10.1016/0926-860X(94)85018-6
88 J Dai , F Li , X Fu . Towards shell biorefinery: advances in chemical-catalytic conversion of chitin biomass to organonitrogen chemicals. ChemSusChem, 2020, 13(24): 6498–6508
https://doi.org/10.1002/cssc.202001955
89 N Yan , X Chen . Sustainability: don’t waste seafood waste. Nature, 2015, 524(7564): 155–157
https://doi.org/10.1038/524155a
90 X ChenH YangN Yan. Shell biorefinery: dream or reality? Chemistry, 2016, 22(38): 13402–13421
91 H Yang , G Gözaydın , R R Nasaruddin , J R G Har , X Chen , X Wang , N Yan . Toward the shell biorefinery: processing crustacean shell waste using hot water and carbonic acid. ACS Sustainable Chemistry & Engineering, 2019, 7(5): 5532–5542
https://doi.org/10.1021/acssuschemeng.8b06853
92 B Duan , X Zheng , Z Xia , X Fan , L Guo , J Liu , Y Wang , Q Ye , L Zhang . Highly biocompatible nanofibrous microspheres self-assembled from chitin in NaOH/urea aqueous solution as cell carriers. Angewandte Chemie International Edition, 2015, 54(17): 5152–5156
https://doi.org/10.1002/anie.201412129
93 J Dai , G Gözaydın , C Hu , N Yan . Catalytic conversion of chitosan to glucosaminic acid by tandem hydrolysis and oxidation. ACS Sustainable Chemistry & Engineering, 2019, 7(14): 12399–12407
https://doi.org/10.1021/acssuschemeng.9b01912
94 A Kruse , N Dahmen . Water—a magic solvent for biomass conversion. Journal of Supercritical Fluids, 2015, 96(1): 36–45
https://doi.org/10.1016/j.supflu.2014.09.038
95 J A Libra , K S Ro , C Kammann , A Funke , N D Berge , Y Neubauer , M M Titirici , C Fühner , O Bens , J Kern . et al.. Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels, 2011, 2(1): 71–106
https://doi.org/10.4155/bfs.10.81
96 A Kruse , A Funke , M M Titirici . Hydrothermal conversion of biomass to fuels and energetic materials. Current Opinion in Chemical Biology, 2013, 17(3): 515–521
https://doi.org/10.1016/j.cbpa.2013.05.004
97 B Zhang , B K Biswal , J Zhang , R Balasubramanian . Hydrothermal treatment of biomass feedstocks for sustainable production of chemicals, fuels, and materials: progress and perspectives. Chemical Reviews, 2023, 123(11): 7193–7294
https://doi.org/10.1021/acs.chemrev.2c00673
98 C L Gwyther , A P Williams , P N Golyshin , G Edwards-Jones , D L Jones . The environmental and biosecurity characteristics of livestock carcass disposal methods: a review. Waste Management, 2011, 31(4): 767–778
https://doi.org/10.1016/j.wasman.2010.12.005
99 F Pietrucci , J C Aponte , R Starr , A Pérez-Villa , J E Elsila , J P Dworkin , A M Saitta . Hydrothermal decomposition of amino acids and origins of prebiotic meteoritic organic compounds. ACS Earth & Space Chemistry, 2018, 2(6): 588–598
https://doi.org/10.1021/acsearthspacechem.8b00025
100 S Changi , M Zhu , P E Savage . Hydrothermal reaction kinetics and pathways of phenylalanine alone and in binary mixtures. ChemSusChem, 2012, 5(9): 1743–1757
https://doi.org/10.1002/cssc.201200146
101 N Sato , A T Quitain , K Kang , H Daimon , K Fujie . Reaction kinetics of amino acid decomposition in high-temperature and high-pressure water. Industrial & Engineering Chemistry Research, 2004, 43(13): 3217–3222
https://doi.org/10.1021/ie020733n
102 M Faisal , N Sato , A T Quitain , H Daimon , K Fujie . Reaction kinetics and pathway of hydrothermal decomposition of aspartic acid. International Journal of Chemical Kinetics, 2007, 39(3): 175–180
https://doi.org/10.1002/kin.20229
103 C F Estrada , I Mamajanov , J Hao , D A Sverjensky , G D Cody , R M Hazen . Aspartate transformation at 200 °C with brucite [Mg(OH)2], NH3, and H2: implications for prebiotic molecules in hydrothermal systems. Chemical Geology, 2017, 457(1): 162–172
https://doi.org/10.1016/j.chemgeo.2017.03.025
104 J R Vallentyne . Biogeochemistry of organic matter—II. Thermal reaction kinetics and transformation products of amino compounds. Geochimica et Cosmochimica Acta, 1964, 28(2): 157–188
https://doi.org/10.1016/0016-7037(64)90147-4
105 Y Qian , M H Engel , S A Macko , S Carpenter , J W Deming . Kinetics of peptide hydrolysis and amino acid decomposition at high temperature. Geochimica et Cosmochimica Acta, 1993, 57(14): 3281–3293
https://doi.org/10.1016/0016-7037(93)90540-D
106 E Andersson , N G Holm . The stability of some selected amino acids under attempted redox constrained hydrothermal conditions. Origins of Life and Evolution of the Biosphere, 2000, 30(1): 9–23
https://doi.org/10.1023/A:1006668322298
107 J L Bada , S L Miller , M Zhao . The stability of amino acids at submarine hydrothermal vent temperatures. Origins of Life and Evolution of the Biosphere, 1995, 25(1): 111–118
https://doi.org/10.1007/BF01581577
108 T Rogalinski , S Herrmann , G Brunner . Production of amino acids from bovine serum albumin by continuous sub-critical water hydrolysis. Journal of Supercritical Fluids, 2005, 36(1): 49–58
https://doi.org/10.1016/j.supflu.2005.03.001
109 G Zhu , X Zhu , Q Fan , X Wan . Kinetics of amino acid production from bean dregs by hydrolysis in sub-critical water. Amino Acids, 2011, 40(4): 1107–1113
https://doi.org/10.1007/s00726-010-0734-9
110 W Abdelmoez , T Nakahasi , H Yoshida . Amino acid transformation and decomposition in saturated subcritical water conditions. Industrial & Engineering Chemistry Research, 2007, 46(16): 5286–5294
https://doi.org/10.1021/ie070151b
111 J Li , T B Brill . Spectroscopy of hydrothermal reactions 25: kinetics of the decarboxylation of protein amino acids and the effect of side chains on hydrothermal stability. Journal of Physical Chemistry A, 2003, 107(31): 5987–5992
https://doi.org/10.1021/jp0224766
112 D Klingler , J Berg , H Vogel . Hydrothermal reactions of alanine and glycine in sub- and supercritical water. Journal of Supercritical Fluids, 2007, 43(1): 112–119
https://doi.org/10.1016/j.supflu.2007.04.008
113 Y P Chen , Y Q Huang , J J Xie , X L Yin , C Z Wu . Hydrothermal reaction of phenylalanine as a model compound of algal protein. Journal of Fuel Chemistry & Technology, 2014, 42(1): 61–67
https://doi.org/10.1016/S1872-5813(14)60010-4
114 M P Torrens-Spence , P Liu , H Ding , K Harich , G Gillaspy , J Li . Biochemical evaluation of the decarboxylation and decarboxylation-deamination activities of plant aromatic amino acid decarboxylases. Journal of Biological Chemistry, 2013, 288(4): 2376–2387
https://doi.org/10.1074/jbc.M112.401752
115 M A Iqubal , R Sharma , S Jheeta . Kamaluddin. Thermal condensation of glycine and alanine on metal ferrite surface: primitive peptide bond formation scenario. Life, 2017, 7(2): 15
https://doi.org/10.3390/life7020015
116 T Otake , T Taniguchi , Y Furukawa , F Kawamura , H Nakazawa , T Kakegawa . Stability of amino acids and their oligomerization under high-pressure conditions: implications for prebiotic chemistry. Astrobiology, 2011, 11(8): 799–813
https://doi.org/10.1089/ast.2011.0637
117 U Pedreira-Segade , J Hao , G Montagnac , H Cardon , I Daniel . Spontaneous polymerization of glycine under hydrothermal conditions. ACS Earth & Space Chemistry, 2019, 3(8): 1669–1677
https://doi.org/10.1021/acsearthspacechem.9b00043
118 J E Hodge . Dehydrated foods, chemistry of browning reactions in model systems. Journal of Agricultural and Food Chemistry, 1953, 1(15): 928–943
https://doi.org/10.1021/jf60015a004
119 S I F S Martins , W M F Jongen , M A J S van Boekel . A review of Maillard reaction in food and implications to kinetic modelling. Trends in Food Science & Technology, 2000, 11(9): 364–373
https://doi.org/10.1016/S0924-2244(01)00022-X
120 J Li , T B Brill . Spectroscopy of hydrothermal reactions, part 26: kinetics of decarboxylation of aliphatic amino acids and comparison with the rates of racemization. International Journal of Chemical Kinetics, 2003, 35(11): 602–610
https://doi.org/10.1002/kin.10160
121 S Ueno , H Ichinoi , J Zhao , T Fujii . Degradation of fish gelatin using hot-compressed water and the properties of the degradation products. High Pressure Research, 2015, 35(2): 203–213
https://doi.org/10.1080/08957959.2015.1023197
122 M Sohn , C T Ho . Ammonia generation during thermal degradation of amino acids. Journal of Agricultural and Food Chemistry, 1995, 43(12): 3001–3003
https://doi.org/10.1021/jf00060a001
123 D L Bella , C Hahn , M H Stipanuk . Effects of nonsulfur and sulfur amino acids on the regulation of hepatic enzymes of cysteine metabolism. American Journal of Physiology. Endocrinology and Metabolism, 1999, 277(1): E144–E153
https://doi.org/10.1152/ajpendo.1999.277.1.E144
124 M H Stipanuk , J E Jr Dominy , J I Lee , R M Coloso . Mammalian cysteine metabolism: new insights into regulation of cysteine metabolism. Journal of Nutrition, 2006, 136(6): 1652S–1659S
https://doi.org/10.1093/jn/136.6.1652S
125 Y H Kwon , M H Stipanuk . Cysteine regulates expression of cysteine dioxygenase and γ-glutamylcysteine synthetase in cultured rat hepatocytes. American Journal of Physiology. Endocrinology and Metabolism, 2001, 280(5): E804–E815
https://doi.org/10.1152/ajpendo.2001.280.5.E804
126 G Courtney-MartinP B Pencharz. Sulfur amino acids metabolism from protein synthesis to glutathione. In: The Molecular Nutrition of Amino Acids and Proteins. Dardevet D, ed. Boston: Academic Press, 2016, 265–286
127 J Kovacs , E M Holleran , K Y Hui . Kinetic studies in peptide chemistry. Coupling, racemization and evaluation of methods useful for shortening coupling time. Journal of Organic Chemistry, 1980, 45(6): 1060–1065
https://doi.org/10.1021/jo01294a029
128 M Fujimaki , S Kato , T Kurata . Pyrolysis of sulfur-containing amino acids. Agricultural and Biological Chemistry, 1969, 33(8): 1144–1151
https://doi.org/10.1080/00021369.1969.10859440
129 Y Nagano , H Samejima , S Kinoshita . Antioxidant activity of 3-methylthiopropylamine hydrochloride. Agricultural and Biological Chemistry, 1968, 32(7): 846–850
https://doi.org/10.1080/00021369.1968.10859150
130 T Samanmulya , O Farobie , Y Matsumura . Gasification characteristics of histidine and 4-methylimidazole under supercritical water conditions. Biomass Conversion and Biorefinery, 2017, 7(4): 487–494
https://doi.org/10.1007/s13399-017-0242-1
131 F De Schouwer , L Claes , A Vandekerkhove , J Verduyckt , D E De Vos . Protein-rich biomass waste as a resource for future biorefineries: state of the art, challenges, and opportunities. ChemSusChem, 2019, 12(7): 1272–1303
https://doi.org/10.1002/cssc.201802418
132 R Kourist , J K Guterl , K Miyamoto , V Sieber . Enzymatic decarboxylation: an emerging reaction for chemicals production from renewable resources. ChemCatChem, 2014, 6(3): 689–701
https://doi.org/10.1002/cctc.201300881
133 N Yamano , N Kawasaki , S Takeda , A Nakayama . Production of 2-pyrrolidone from biobased glutamate by using Escherichia coli. Journal of Polymers and the Environment, 2013, 21(2): 528–533
https://doi.org/10.1007/s10924-012-0466-x
134 Y Teng , E L Scott , S C M Witte-van Dijk , J P M Sanders . Simultaneous and selective decarboxylation of l-serine and deamination of l-phenylalanine in an amino acid mixture—a means of separating amino acids for synthesizing biobased chemicals. New Biotechnology, 2016, 33(1): 171–178
https://doi.org/10.1016/j.nbt.2015.04.006
135 K S Egorova , M M Seitkalieva , A V Posvyatenko , V P Ananikov . An unexpected increase of toxicity of amino acid-containing ionic liquids. Toxicology Research, 2015, 4(1): 152–159
https://doi.org/10.1039/C4TX00079J
136 J Spekreijse , Nôtre J Le , Haveren J van , E L Scott , J P M Sanders . Simultaneous production of biobased styrene and acrylates using ethenolysis. Green Chemistry, 2012, 14(10): 2747–2751
https://doi.org/10.1039/c2gc35498e
137 L Claes , M Janssen , D E De Vos . Organocatalytic decarboxylation of amino acids as a route to bio-based amines and amides. ChemCatChem, 2019, 11(17): 4297–4306
https://doi.org/10.1002/cctc.201900800
138 G Chatelus . Thermal decarboxylation of α-amino acids. Bulletin de la Société Chimique de France, 1964, 10(1): 2523–2532
139 M Hartmann , M Seiberth . Über ein tetralin-peroxyd. Helvetica Chimica Acta, 1932, 15(1): 1390–1392
https://doi.org/10.1002/hlca.193201501165
140 R Kumar , S Shah , P Paramita Das , G G K Bhagavanbhai , A Al Fatesh , B Chowdhury . An overview of caprolactam synthesis. Catalysis Reviews. Science and Engineering, 2019, 61(4): 516–594
https://doi.org/10.1080/01614940.2019.1650876
141 J W Frost. Catalytic deamination for caprolactam production. US Patent, US8283466B2, 2012
142 J W Frost. Synthesis of caprolactam from lysine. US Patent, US7399855B2, 2008
143 F De Schouwer , T Cuypers , L Claes , D E De Vos . Metal-catalyzed reductive deamination of glutamic acid to bio-based dimethyl glutarate and methylamines. Green Chemistry, 2017, 19(8): 1866–1876
https://doi.org/10.1039/C6GC03222B
144 I M Weiss , C Muth , R Drumm , H O K Kirchner . Thermal decomposition of the amino acids glycine, cysteine, aspartic acid, asparagine, glutamic acid, glutamine, arginine and histidine. BMC Biophysics, 2018, 11(1): 2
https://doi.org/10.1186/s13628-018-0042-4
145 M A F Mazlan , Y Uemura , N Osman , Y Suzana . Fast pyrolysis of hardwood residues using a fixed bed drop-type pyrolyzer. Energy Conversion and Management, 2015, 98(1): 208–214
https://doi.org/10.1016/j.enconman.2015.03.102
146 C Mullen , A Boateng , N Goldberg , I Lima , D Laird , K Hicks . Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis. Biomass and Bioenergy, 2010, 34(1): 67–74
https://doi.org/10.1016/j.biombioe.2009.09.012
147 H Su , G Xu , H Chen , Y Xu . Enriching duckweed as an energy crop for producing biobutanol using enzyme hydrolysis pretreatments and strengthening fermentation process using pH-stat. ACS Sustainable Chemistry & Engineering, 2015, 3(1): 2002
https://doi.org/10.1021/acssuschemeng.5b00538
148 G Liu , M M Wright , Q Zhao , R C Brown , K Wang , Y Xue . Catalytic pyrolysis of amino acids: comparison of aliphatic amino acid and cyclic amino acid. Energy Conversion and Management, 2016, 112(1): 220–225
https://doi.org/10.1016/j.enconman.2016.01.024
149 J Li , Z Wang , X Yang , L Hu , Y Liu , C Wang . Decomposing or subliming? An investigation of thermal behavior of L-leucine. Thermochimica Acta, 2006, 447(1): 147–153
https://doi.org/10.1016/j.tca.2006.05.004
150 H Kitagawa , Y Sendoda , Y Ono . Transformation of propane into aromatic hydrocarbons over ZSM-5 zeolites. Journal of Catalysis, 1986, 101(1): 12–18
https://doi.org/10.1016/0021-9517(86)90223-X
151 Y Ono , H Kitagawa , Y Sendoda . Transformation of but-1-ene into aromatic hydrocarbons over ZSM-5 zeolites. Journal of the Chemical Society, Faraday Transactions 1. Physical Chemistry in Condensed Phases, 1987, 83(9): 2913–2923
152 R Sharma , W G Chan , J Seeman , M Hajaligol . Formation of low molecular weight heterocycles and polycyclic aromatic compounds (PACs) in the pyrolysis of α-amino acids. Journal of Analytical and Applied Pyrolysis, 2003, 66(1): 97–121
https://doi.org/10.1016/S0165-2370(02)00108-0
153 K Wang , R Brown . Catalytic pyrolysis of corn dried distillers grains with solubles to produce hydrocarbons. ACS Sustainable Chemistry & Engineering, 2014, 2(1): 2142–2148
https://doi.org/10.1021/sc5003374
154 K Wang , K H Kim , R C Brown . Catalytic pyrolysis of individual components of lignocellulosic biomass. Green Chemistry, 2014, 16(2): 727–735
https://doi.org/10.1039/C3GC41288A
155 K Wang , R C Brown . Catalytic pyrolysis of microalgae for production of aromatics and ammonia. Green Chemistry, 2013, 15(3): 675–681
https://doi.org/10.1039/c3gc00031a
156 H Zhang , Y T Cheng , T P Vispute , R Xiao , G W Huber . Catalytic conversion of biomass-derived feedstocks into olefins and aromatics with ZSM-5: the hydrogen to carbon effective ratio. Energy & Environmental Science, 2011, 4(6): 2297–2307
https://doi.org/10.1039/c1ee01230d
157 T R Carlson , J Jae , Y C Lin , G A Tompsett , G W Huber . Catalytic fast pyrolysis of glucose with HZSM-5: the combined homogeneous and heterogeneous reactions. Journal of Catalysis, 2010, 270(1): 110–124
https://doi.org/10.1016/j.jcat.2009.12.013
158 Y C Lien , W W Nawar . Thermal decomposition of some amico acids: alanine and β-alanine. Journal of Food Science, 1974, 39(5): 914–916
https://doi.org/10.1111/j.1365-2621.1974.tb07275.x
159 Y Tian , J Zhang , W Zuo , L Chen , Y Cui , T Tan . Nitrogen conversion in relation to NH3 and HCN during microwave pyrolysis of sewage sludge. Environmental Science & Technology, 2013, 47(7): 3498–3505
https://doi.org/10.1021/es304248j
160 S Yuan , Z J Zhou , J Li , F C Wang . Nitrogen conversion during rapid pyrolysis of coal and petroleum coke in a high-frequency furnace. Applied Energy, 2012, 92(1): 854–859
https://doi.org/10.1016/j.apenergy.2011.08.042
161 M Li , Y Zhao , Q Guo , X Qian , D Niu . Bio-hydrogen production from food waste and sewage sludge in the presence of aged refuse excavated from refuse landfill. Renewable Energy, 2008, 33(12): 2573–2579
https://doi.org/10.1016/j.renene.2008.02.018
162 M Gomez-Flores , G Nakhla , H Hafez . Microbial kinetics of Clostridium termitidis on cellobiose and glucose for biohydrogen production. Biotechnology Letters, 2015, 37(10): 1965–1971
https://doi.org/10.1007/s10529-015-1891-4
163 J Cheng , L Ding , R Lin , M Liu , J Zhou , K Cen . Physicochemical characterization of typical municipal solid wastes for fermentative hydrogen and methane co-production. Energy Conversion and Management, 2016, 117(1): 297–304
https://doi.org/10.1016/j.enconman.2016.03.016
164 G Ionescu , E Rada , M Ragazzi , C Mărculescu , A Badea , T Apostol . Integrated municipal solid waste scenario model using advanced pretreatment and waste to energy processes. Energy Conversion and Management, 2013, 76(1): 1083–1092
https://doi.org/10.1016/j.enconman.2013.08.049
165 P Sharma , U Melkania . Enhancement effect of amino acids on hydrogen production from organic fraction of municipal solid waste using co-culture of Escherichia coli and Enterobacter aerogenes. Energy Conversion and Management, 2018, 163(1): 260–267
https://doi.org/10.1016/j.enconman.2018.02.072
166 A Xia , J Cheng , L Ding , R Lin , W Song , H Su , J Zhou , K Cen . Substrate consumption and hydrogen production via co-fermentation of monomers derived from carbohydrates and proteins in biomass wastes. Applied Energy, 2015, 139(1): 9–16
https://doi.org/10.1016/j.apenergy.2014.11.016
167 J Cheng , W Song , A Xia , H Su , J Zhou , K Cen . Sequential generation of hydrogen and methane from xylose by two-stage anaerobic fermentation. International Journal of Hydrogen Energy, 2012, 37(1): 13323–13329
https://doi.org/10.1016/j.ijhydene.2012.06.049
168 Y Chen , N Xiao , Y Zhao , H Mu . Enhancement of hydrogen production during waste activated sludge anaerobic fermentation by carbohydrate substrate addition and pH control. Bioresource Technology, 2012, 114(1): 349–356
https://doi.org/10.1016/j.biortech.2012.03.052
169 H Su , J Cheng , J Zhou , W Song , K Cen . Combination of dark- and photo-fermentation to enhance hydrogen production and energy conversion efficiency. International Journal of Hydrogen Energy, 2009, 34(1): 8846–8853
https://doi.org/10.1016/j.ijhydene.2009.09.001
170 M Junghare , S Subudhi , B Lal . Improvement of hydrogen production under decreased partial pressure by newly isolated alkaline tolerant anaerobe, Clostridium butyricum TM-9A: optimization of process parameters. International Journal of Hydrogen Energy, 2012, 37(1): 3160–3168
https://doi.org/10.1016/j.ijhydene.2011.11.043
171 Y C Lo , W C Lu , C Y Chen , J S Chang . Dark fermentative hydrogen production from enzymatic hydrolysate of xylan and pretreated rice straw by Clostridium butyricum CGS5. Bioresource Technology, 2010, 101(15): 5885–5891
https://doi.org/10.1016/j.biortech.2010.02.085
172 A Xia , J Cheng , R Lin , J Liu , J Zhou , K Cen . Sequential generation of hydrogen and methane from glutamic acid through combined photo-fermentation and methanogenesis. Bioresource Technology, 2013, 131(1): 146–151
https://doi.org/10.1016/j.biortech.2012.12.009
173 Z Yuan , H Yang , X Zhi , J Shen . Enhancement effect of L-cysteine on dark fermentative hydrogen production. International Journal of Hydrogen Energy, 2008, 33(22): 6535–6540
https://doi.org/10.1016/j.ijhydene.2008.07.065
174 E Elbeshbishy , H Hafez , G Nakhla . Ultrasonication for biohydrogen production from food waste. International Journal of Hydrogen Energy, 2011, 36(4): 2896–2903
https://doi.org/10.1016/j.ijhydene.2010.12.009
175 A Xia , J Cheng , L Ding , R Lin , W Song , J Zhou , K Cen . Effects of changes in microbial community on the fermentative production of hydrogen and soluble metabolites from Chlorella pyrenoidosa biomass in semi-continuous operation. Energy, 2014, 68(1): 982–988
https://doi.org/10.1016/j.energy.2014.02.054
176 H Chen , Y Xie , W Chen , M Xia , K Li , Z Chen , Y Chen , H Yang . Investigation on co-pyrolysis of lignocellulosic biomass and amino acids using TG-FTIR and Py-GC/MS. Energy Conversion and Management, 2019, 196(1): 320–329
https://doi.org/10.1016/j.enconman.2019.06.010
177 P BrittA C BuchananC OwensJ Skeen. Does glucose enhance the formation of nitrogen containing polycyclic aromatic compounds and polycyclic aromatic hydrocarbons in the pyrolysis of proline? Fuel, 2004, 83(12): 1417–1432
178 G W Huber , S Iborra , A Corma . Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chemical Reviews, 2006, 106(9): 4044–4098
https://doi.org/10.1021/cr068360d
179 H Yang , B Huan , Y Chen , Y Gao , J Li , H Chen . Biomass-based pyrolytic polygeneration system for bamboo industry waste: evolution of the char structure and the pyrolysis mechanism. Energy & Fuels, 2016, 30(8): 6430–6439
https://doi.org/10.1021/acs.energyfuels.6b00732
180 S S Choi , J E Ko . Analysis of cyclic pyrolysis products formed from amino acid monomer. Journal of Chromatography. A, 2011, 1218(46): 8443–8455
https://doi.org/10.1016/j.chroma.2011.09.055
181 R Sharma , W Chan , M Hajaligol . Product compositions from pyrolysis of some aliphatic α-amino acids. Journal of Analytical and Applied Pyrolysis, 2006, 75(2): 69–81
https://doi.org/10.1016/j.jaap.2005.03.010
182 Q Ren , C Zhao . NOx and N2O precursors from biomass pyrolysis: nitrogen transformation from amino acid. Environmental Science & Technology, 2012, 46(7): 4236–4240
https://doi.org/10.1021/es204142e
183 G Chiavari , G C Galletti . Pyrolysis—gas chromatography/mass spectrometry of amino acids. Journal of Analytical and Applied Pyrolysis, 1992, 24(2): 123–137
https://doi.org/10.1016/0165-2370(92)85024-F
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed