Rational design of practical layered transition metal oxide cathode materials for sodium-ion batteries
Yan Wang1, Ning Ding1, Rui Zhang1(), Guanhua Jin2(), Dan Sun1, Yougen Tang1, Haiyan Wang1()
1. Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China 2. College of Energy and Chemical Engineering, Xinjiang Institute of Technology, Aksu Prefecture 843100, China
Sodium-ion batteries (SIBs), which serve as alternatives or supplements to lithium-ion batteries, have been developed rapidly in recent years. Designing advanced high-performance layered NaxTMO2 cathode materials is beneficial for accelerating the commercialization of SIBs. Herein, the recent research progress on scalable synthesis methods, challenges on the path to commercialization and practical material design strategies for layered NaxTMO2 cathode materials is summarized. Co-precipitation method and solid-phase method are commonly used to synthesize NaxTMO2 on mass production and show their own advantages and disadvantages in terms of manufacturing cost, operative difficulty, sample quality and so on. To overcome drawbacks of layered NaxTMO2 cathode materials and meet the requirements for practical application, a detailed and deep understanding of development trends of layered NaxTMO2 cathode materials is also provided, including high specific energy materials, high-entropy oxides, single crystal materials, wide operation temperature materials and high air stability materials. This work can provide useful guidance in developing practical layered NaxTMO2 cathode materials for commercial SIBs.
Corresponding Author(s):
Rui Zhang,Guanhua Jin,Haiyan Wang
引用本文:
. [J]. Frontiers of Chemical Science and Engineering, 2024, 18(7): 80.
Yan Wang, Ning Ding, Rui Zhang, Guanhua Jin, Dan Sun, Yougen Tang, Haiyan Wang. Rational design of practical layered transition metal oxide cathode materials for sodium-ion batteries. Front. Chem. Sci. Eng., 2024, 18(7): 80.
√ Uniform morphology and distribution of elements√ Easy to scale production
× Complicated control parameters× High cost × Wastewater treatment
Soluble salt
Solid-phase method
√ Simple operation process√ Easy to control√ Low cost√ Easy to scale production
× Long calcination time× Large energy consumption× Low efficiency× Poor sample uniformity × Slightly poor performance
Flexibility
Tab.1
Fig.4
Fig.5
Fig.6
Fig.7
Fig.8
Fig.9
1
L Zhao , T Zhang , W Li , T Li , L Zhang , X Zhang , Z Wang . Engineering of sodium-ion batteries: opportunities and challenges. Engineering, 2023, 24: 172–183 https://doi.org/10.1016/j.eng.2021.08.032
2
C Arbizzani , G Lacarbonara . From Volta’s pile to lithium ion battery: 200 years of energy. Pure and Applied Chemistry, 2023, 95(11): 1131–1139 https://doi.org/10.1515/pac-2023-0502
3
W Zuo , A Innocenti , M Zarrabeitia , D Bresser , Y Yang , S Passerini . Layered oxide cathodes for sodium-ion batteries: storage mechanism, electrochemistry, and techno-economics. Accounts of Chemical Research, 2023, 56(3): 284–296 https://doi.org/10.1021/acs.accounts.2c00690
4
N Yabuuchi , K Kubota , M Dahbi , S Komaba . Research development on sodium-ion batteries. Chemical Reviews, 2014, 114(23): 11636–11682 https://doi.org/10.1021/cr500192f
5
J Robinson , D Finegan , T Heenan , K Smith , E Kendrick , D Brett , P Shearing . Microstructural analysis of the effects of thermal runaway on Li-ion and Na-ion battery electrodes. Journal of Electrochemical Energy Conversion and Storage, 2018, 15(1): 011010–011019 https://doi.org/10.1115/1.4038518
6
P Gupta , S Pushpakanth , M Haider , S Basu . Understanding the design of cathode materials for Na-ion batteries. ACS Omega, 2022, 7(7): 5605–5614 https://doi.org/10.1021/acsomega.1c05794
7
W Wang , Y Gang , Z Hu , Z Yan , W Li , Y Li , Q Gu , Z Wang , S Chou , H Liu . et al.. Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries. Nature Communications, 2020, 11(1): 980 https://doi.org/10.1038/s41467-020-14444-4
8
L Zhu , H Wang , D Sun , Y Tang , H Wang . A comprehensive review on the fabrication, modification and applications of Na3V2(PO4)2F3 cathodes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(41): 21387–21407 https://doi.org/10.1039/D0TA07872G
9
L Zhu , M Wang , S Xiang , D Sun , Y Tang , H Wang . A medium-entropy phosphate cathode with multielectron redox reaction for advanced sodium-ion batteries. Advanced Energy Materials, 2023, 13(36): 2302046 https://doi.org/10.1002/aenm.202302046
10
R Zhang , H Chen , H Yue . Room-temperature synthesis of layered open framework cathode for sodium-ion batteries. Chinese Chemical Letters, 2023, 34(5): 107580 https://doi.org/10.1016/j.cclet.2022.06.003
11
Q Zhang , L Fu , J Luan , X Huang , Y Tang , H Xie , H Wang . Surface engineering induced core-shell Prussian blue@polyaniline nanocubes as a high-rate and long-life sodium-ion battery cathode. Journal of Power Sources, 2018, 395: 305–313 https://doi.org/10.1016/j.jpowsour.2018.05.085
12
A Bauer , J Song , S Vail , W Pan , J Barker , Y Lu . The scale-up and commercialization of nonaqueous Na-ion battery technologies. Advanced Energy Materials, 2018, 8(17): 1702869 https://doi.org/10.1002/aenm.201702869
13
C Wang , G Wang , E Wang , T Wu , H Yu . Synthesis and modification of lithium-ion battery cathode materials. Chemical Industry and Engineering Progress, 2021, 40(9): 4998–5011
14
S Chen , C Wu , L Shen , C Zhu , Y Huang , K Xi , J Maier , Y Yu . Challenges and perspectives for NASICON-type electrode materials for advanced sodium-ion batteries. Advanced Materials, 2017, 29(48): 1700431 https://doi.org/10.1002/adma.201700431
15
Y HuY LuL Chen. Sodium-ion Battery Science and Technology. Beijing: Science Press, 2020, 448–450 (in Chinese)
16
A Ma , Z Yin , J Wang , Z Wang , H Guo , G Yan . Al-doped NaNi1/3Mn1/3Fe1/3O2 for high performance of sodium ion batteries. Ionics, 2020, 26(4): 1797–1804 https://doi.org/10.1007/s11581-019-03437-z
17
X Luo , Q Huang , Y Feng , C Zhang , C Liang , L Zhou , W Wei . Constructing a composite structure by a gradient Mg2+ doping strategy for high-performance sodium-ion batteries. ACS Applied Materials & Interfaces, 2022, 14(46): 51846–51854 https://doi.org/10.1021/acsami.2c13354
18
R Zhang , Y Wang , R Liu , D Sun , Y Tang , Z Xie , H Wang . A multifunctional cathode sodiation additive for high-performance sodium-ion batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2022, 10(48): 25546–25555 https://doi.org/10.1039/D2TA07910K
19
J Chen , X Li , L Mi , W Chen . Emerging presodiation strategies for long-life sodium-ion batteries. Energy Lab, 2023, 1(3): 230008 https://doi.org/10.54227/elab.20230008
20
X LiangJ Y HwangY K Sun. Practical cathodes for sodium-ion batteries: who will take the crown? Advanced Energy Materials, 2023, 13(37): 2301975
21
Z Liu , J Wu , J Zeng , F Li , C Peng , D Xue , M Zhu , J Liu . Co-free layered oxide cathode material with stable anionic redox reaction for sodium-ion batteries. Advanced Energy Materials, 2023, 13(29): 2301471 https://doi.org/10.1002/aenm.202301471
22
X Yuan , Y Guo , L Gan , X Yang , W He , X Zhang , Y Yin , S Xin , H Yao , Z Huang . et al.. A universal strategy toward air-stable and high-rate P3 layered oxide cathodes for Na-ion batteries. Advanced Functional Materials, 2022, 32(17): 2111466 https://doi.org/10.1002/adfm.202111466
23
A Rudola , A Rennie , R Heap , S Meysami , A Lowbridge , F Mazzali , R Sayers , C Wright , J Barker . Commercialisation of high energy density sodium-ion batteries: Faradion’s journey and outlook. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2021, 9(13): 8279–8302 https://doi.org/10.1039/D1TA00376C
24
L Mu , S Xu , Y Li , Y Hu , H Li , L Chen , X Huang . Prototype sodium-ion batteries using an air-stable and Co/Ni-free O3-layered metal oxide cathode. Advanced Materials, 2015, 27(43): 6928–6933 https://doi.org/10.1002/adma.201502449
25
L Kong , H Liu , Y Zhu , J Li , Y Su , H Li , H Hu , Y Liu , M Yang , Z Jian . et al.. Layered oxide cathodes for sodium-ion batteries: microstructure design, local chemistry and structural unit. Science China. Chemistry, 2024, 67: 191–213
26
X Zhu , S Xu , X Wang , M Liu , Y Cheng , P Wang . Sodium composite oxide cathode materials: phase regulation, electrochemical performance and reaction mechanism. Batteries & Supercaps, 2023, 6(3): e202200473 https://doi.org/10.1002/batt.202200473
27
J Xiao , F Zhang , K Tang , X Li , D Wang , Y Wang , H Liu , M Wu , G Wang . Rational design of a P2-type spherical layered oxide cathode for high-performance sodium-ion batteries. ACS Central Science, 2019, 5(12): 1937–1945 https://doi.org/10.1021/acscentsci.9b00982
28
Z Li , R Gao , J Zhang , X Zhang , Z Hu , X Liu . New insights into designing high-rate performance cathode materials for sodium ion batteries by enlarging the slab-spacing of the Na-ion diffusion layer. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(9): 3453–3461 https://doi.org/10.1039/C5TA10589G
29
S Zhang , Y Guo , Y Zhou , X Zhang , Y Niu , E Wang , L Huang , P An , J Zhang , X Yang . et al.. P3/O3 integrated layered oxide as high-power and long-life cathode toward Na-ion batteries. Small, 2021, 17(10): 2007236 https://doi.org/10.1002/smll.202007236
30
S Kim , J Hong , Y Kang . Spray-assisted synthesis of layered P2-type Na0.67Mn0.67Cu0.33O2 powders and their superior electrochemical properties for Na-ion battery cathode. Applied Surface Science, 2023, 611: 155673 https://doi.org/10.1016/j.apsusc.2022.155673
31
X Luo , Q Huang , Y Feng , L Zhou , W Wei . Designing layered Na3Ni2SbO6 cathodes with hierarchical and hollow nanostructure for sodium-ion batteries. ChemElectroChem, 2022, 9(20): e202200821 https://doi.org/10.1002/celc.202200821
32
Z Feng , R Rajagopalan , S Zhang , D Sun , Y Tang , Y Ren , H Wang . A three in one strategy to achieve zirconium doping, boron doping, and interfacial coating for stable LiNi0.8Co0.1Mn0.1O2 cathode. Advanced Science, 2021, 8(2): 2001809 https://doi.org/10.1002/advs.202001809
33
M Leng , J Bi , W Wang , R Liu , C Xia . Synthesis and characterization of Ru doped NaNi0.5Mn0.3Ti0.2O2 cathode material with improved electrochemical performance for sodium-ion batteries. Ionics, 2019, 25(3): 1105–1115 https://doi.org/10.1007/s11581-018-2830-x
34
H Wang , X Liao , Y Yang , X Yan , Y He , Z Ma . Large-scale synthesis of NaNi1/3Fe1/3Mn1/3O2 as high performance cathode materials for sodium ion batteries. Journal of the Electrochemical Society, 2016, 163(3): A565–A570 https://doi.org/10.1149/2.0011605jes
35
L Xu , F Zhou , J Kong , H Zhou , Q Zhang , Q Wang , G Yan . Influence of precursor phase on the structure and electrochemical properties of Li(Ni0.6Mn0.2Co0.2)O2 cathode materials. Solid State Ionics, 2018, 324: 49–58 https://doi.org/10.1016/j.ssi.2018.06.010
36
Z Wu , Y Zhou , J Zeng , C Hai , Y Sun , X Ren , Y Shen , X Li . Investigating the effect of pH on the growth of coprecipitated Ni0.8Co0.1Mn0.1(OH)2 agglomerates as precursors of cathode materials for Li-ion batteries. Ceramics International, 2023, 49(10): 15851–15864 https://doi.org/10.1016/j.ceramint.2023.01.180
37
Z Wu , Y Zhou , C Hai , J Zeng , Y Sun , X Ren , Y Shen , X Li , G Zhang . Analysis of the growth mechanism of hierarchical structure Ni0.8Co0.1Mn0.1(OH)2 agglomerates as precursors of LiNi0.8Co0.1Mn0.1O2 in the presence of aqueous ammonia. Applied Surface Science, 2023, 619: 156379 https://doi.org/10.1016/j.apsusc.2023.156379
38
L Xu , F Zhou , J Kong , H Zhou , Q Zhang . Effect of testing temperature on the electrochemical properties of Li(Ni0.6Mn0.2Co0.2)O2 and its Ti3C2(OH)2 modification as cathode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2019, 804: 353–363 https://doi.org/10.1016/j.jallcom.2019.07.027
39
M Lee , Y Kang , S Myung , Y Sun . Synthetic optimization of Li[Ni1/3Co1/3Mn1/3]O2 via co-precipitation. Electrochimica Acta, 2004, 50(4): 939–948 https://doi.org/10.1016/j.electacta.2004.07.038
40
S Zhang , C Deng , B Fu , S Yang , L Ma . Synthetic optimization of spherical Li[Ni1/3Mn1/3Co1/3]O2 prepared by a carbonate co-precipitation method. Powder Technology, 2010, 198(3): 373–380 https://doi.org/10.1016/j.powtec.2009.12.002
41
T Wang , Z H Liu , L Fan , Y Han , X Tang . Synthesis optimization of Li1+x[Mn0.45Co0.40Ni0.15]O2 with different spherical sizes via co-precipitation. Powder Technology, 2008, 187(2): 124–129 https://doi.org/10.1016/j.powtec.2008.02.002
42
V Mhaske , S Jilkar , M Yadav . Minireview on layered transition metal oxides synthesis using coprecipitation for sodium ion batteries cathode material: advances and perspectives. Energy & Fuels, 2023, 37(21): 16221–16244 https://doi.org/10.1021/acs.energyfuels.3c02861
43
W Hua , W Liu , M Chen , S Indris , Z Zheng , X Guo , M Bruns , T Wu , Y Chen , B Zhong . et al.. Unravelling the growth mechanism of hierarchically structured Ni1/3Co1/3Mn1/3(OH)2 and their application as precursors for high-power cathode materials. Electrochimica Acta, 2017, 232: 123–131 https://doi.org/10.1016/j.electacta.2017.02.105
44
K Araño , B Armstrong , E Boeding , G Yang , H III Meyer , E Wang , R Korkosz , K Browning , T Malkowski , B Key . et al.. Functionalized silicon particles for enhanced half-and full-cell cycling of Si-based Li-ion batteries. ACS Applied Materials & Interfaces, 2023, 15(8): 10554–10569 https://doi.org/10.1021/acsami.2c16978
45
S Fleischmann , M Mancini , P Axmann , U Golla-Schindler , U Kaiser , M Wohlfahrt-Mehrens . Insights into the impact of impurities and non-stoichiometric effects on the electrochemical performance of Li2MnSiO4. ChemSusChem, 2016, 9(20): 2982–2993 https://doi.org/10.1002/cssc.201600894
46
W WangW ChouQ Ding. Nickel Cobalt Manganese Based Cathode Materials for Li-ion Batteries Technology Production and Application. Beijing: Chemical Industry Press, 2015, 3 (in Chinese)
47
T Yuan , S Li , Y Sun , J Wang , A Chen , Q Zheng , Y Zhang , L Chen , G Nam , H Che . et al.. A high-rate, durable cathode for sodium-ion batteries: Sb-doped O3-type Ni/Mn-based layered oxides. ACS Nano, 2022, 16(11): 18058–18070 https://doi.org/10.1021/acsnano.2c04702
48
L Yu , H Dong , Y Chang , Z Cheng , K Xu , Y Feng , D Si , X Zhu , M Liu , B Xiao . et al.. Elucidation of the sodium kinetics in layered P-type oxide cathodes. Science China. Chemistry, 2022, 65(10): 2005–2014 https://doi.org/10.1007/s11426-022-1364-1
49
Y Wang , K Tang , X Li , R Yu , X Zhang , Y Huang , G Chen , S Jamil , S Cao , X Xie . et al.. Improved cycle and air stability of P3-Na0.65Mn0.75Ni0.25O2 electrode for sodium-ion batteries coated with metal phosphates. Chemical Engineering Journal, 2019, 372: 1066–1076 https://doi.org/10.1016/j.cej.2019.05.010
50
I Mohan , A Raj , K Shubham , D Lata , S Mandal , S Kumar . Potential of potassium and sodium-ion batteries as the future of energy storage: recent progress in anodic materials. Journal of Energy Storage, 2022, 55: 105625 https://doi.org/10.1016/j.est.2022.105625
51
K Chayambuka , G Mulder , D Danilov , P Notten . From Li-ion batteries toward Na-ion chemistries: challenges and opportunities. Advanced Energy Materials, 2020, 10(38): 2001310 https://doi.org/10.1002/aenm.202001310
52
M Ryu , Y Hong , S Lee , J Park . Ultrahigh loading dry-process for solvent-free lithium-ion battery electrode fabrication. Nature Communications, 2023, 14(1): 1316 https://doi.org/10.1038/s41467-023-37009-7
53
J Deng , W Luo , X Lu , Q Yao , Z Wang , H Liu , H Zhou , S Dou . High energy density sodium-ion battery with industrially feasible and air-stable O3-type layered oxide cathode. Advanced Energy Materials, 2018, 8(5): 1701610 https://doi.org/10.1002/aenm.201701610
54
Y Li , Z Yang , S Xu , L Mu , L Gu , Y Hu , H Li , L Chen . Air-stable copper-based P2-Na7/9Cu2/9Fe1/9Mn2/3O2 as a new positive electrode material for sodium-ion batteries. Advanced Science, 2015, 2(6): 1500031 https://doi.org/10.1002/advs.201500031
55
C Zhao , F Ding , Y Lu , L Chen , Y Hu . High-entropy layered oxide cathodes for sodium-ion batteries. Angewandte Chemie International Edition, 2020, 59(1): 264–269 https://doi.org/10.1002/anie.201912171
56
Y Liu , K Han , D Peng , L Kong , Y Su , H Li , H Hu , J Li , H Wang , Z Fu . et al.. Layered oxide cathodes for sodium-ion batteries: from air stability, interface chemistry to phase transition. InfoMat, 2023, 5(6): e12422 https://doi.org/10.1002/inf2.12422
57
J Feng , N Chernova , F Omenya , L Tong , A Rastogi , W Stanley . Effect of electrode charge balance on the energy storage performance of hybrid supercapacitor cells based on LiFePO4 as Li-ion battery electrode and activated carbon. Journal of Solid State Electrochemistry, 2018, 22(4): 1063–1078 https://doi.org/10.1007/s10008-017-3847-1
58
A Schmidt , A Smith , H Ehrenberg . Power capability and cyclic aging of commercial, high power lithium ion battery cells with respect to different cell designs. Journal of Power Sources, 2019, 425: 27–38 https://doi.org/10.1016/j.jpowsour.2019.03.075
59
M Sathiya , K Hemalatha , K Ramesha , J Tarascon , A Prakash . Synthesis, structure, and electrochemical properties of the layered sodium insertion cathode material: NaNi1/3Mn1/3Co1/3O2. Chemistry of Materials, 2012, 24(10): 1846–1853 https://doi.org/10.1021/cm300466b
60
Y Sun , S Guo , H Zhou . Adverse effects of interlayer-gliding in layered transition-metal oxides on electrochemical sodium-ion storage. Energy & Environmental Science, 2019, 12(3): 825–840 https://doi.org/10.1039/C8EE01006D
61
W Zuo , X Liu , J Qiu , D Zhang , Z Xiao , J Xie , F Ren , J Wang , Y Li , F Ortiz . et al.. Engineering Na+-layer spacings to stabilize Mn-based layered cathodes for sodium-ion batteries. Nature Communications, 2021, 12(1): 4903 https://doi.org/10.1038/s41467-021-25074-9
62
F Fu , X Liu , X Fu , H Chen , L Huang , J Fan , J Le , Q Wang , W Yang , Y Ren . et al.. Entropy and crystal-facet modulation of P2-type layered cathodes for long-lasting sodium-based batteries. Nature Communications, 2022, 13(1): 2826 https://doi.org/10.1038/s41467-022-30113-0
63
C Deng , P Skinner , Y Liu , M Sun , W Tong , C Ma , M Lau , R Hunt , P Barnes , J Xu . et al.. Li-substituted layered spinel cathode material for sodium ion batteries. Chemistry of Materials, 2018, 30(22): 8145–8154 https://doi.org/10.1021/acs.chemmater.8b02614
64
C Yang , X Peng , J Yu , S Li , H Zhang . Engineering crystal-facet modulation to obtain stable Mn-based P2-layered oxide cathodes for sodium-ion batteries. Journal of Colloid and Interface Science, 2023, 629: 1061–1067 https://doi.org/10.1016/j.jcis.2022.09.065
65
Y Sun . Direction for commercialization of O3-type layered cathodes for sodium-ion batteries. ACS Energy Letters, 2020, 5(4): 1278–1280 https://doi.org/10.1021/acsenergylett.0c00597
66
P Yan , J Zheng , M Gu , J Xiao , J Zhang , C Wang . Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nature Communications, 2017, 8(1): 14101 https://doi.org/10.1038/ncomms14101
67
H RyuK ParkC YoonY Sun. Capacity fading of Ni-rich Li[NixCoyMn1–x–y]O2 (0.6 ≤ x ≤ 0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation? Chemistry of Materials, 2018, 30(3): 1155–1163
68
J Anderson , M Schieber . Order-disorder transitions in heat-treated rock-salt lithium ferrite. Journal of Physics and Chemistry of Solids, 1964, 25(9): 961–968 https://doi.org/10.1016/0022-3697(64)90033-2
69
Z Liu , C Peng , J Wu , T Yang , J Zeng , F Li , A Kucernak , D Xue , Q Liu , M Zhu . et al.. Regulating electron distribution of P2-type layered oxide cathodes for practical sodium-ion batteries. Materials Today, 2023, 68: 22–33 https://doi.org/10.1016/j.mattod.2023.06.021
70
S Kim , D Seo , X Ma , G Ceder , K Kang . Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Advanced Energy Materials, 2012, 2(7): 710–721 https://doi.org/10.1002/aenm.201200026
71
H Yao , P Wang , Y Wang , X Yu , Y Yin , Y Guo . Excellent comprehensive performance of Na-based layered oxide benefiting from the synergetic contributions of multimetal ions. Advanced Energy Materials, 2017, 7(15): 1700189 https://doi.org/10.1002/aenm.201700189
72
R Yazami , Y Ozawa , H Gabrisch , B Fultz . Mechanism of electrochemical performance decay in LiCoO2 aged at high voltage. Electrochimica Acta, 2004, 50(2-3): 385–390 https://doi.org/10.1016/j.electacta.2004.03.048
73
I Saadoune , A Maazaz , M Ménétrier , C Delmas . On the NaxNi0.6Co0.4O2 system: physical and electrochemical studies. Journal of Solid State Chemistry, 1996, 122(1): 111–117 https://doi.org/10.1006/jssc.1996.0090
74
W Zhang , C Yuan , J Zhu , T Jin , C Shen , K Xie . Air instability of Ni-rich layered oxides—a roadblock to large scale application. Advanced Energy Materials, 2023, 13(2): 2202993 https://doi.org/10.1002/aenm.202202993
75
P Wang , Y You , Y Yin , Y Guo . Layered oxide cathodes for sodium-ion batteries: phase transition, air stability, and performance. Advanced Energy Materials, 2018, 8(8): 1701912 https://doi.org/10.1002/aenm.201701912
76
M H Han , N Sharma , E Gonzalo , J C Pramudita , H E Brand , J Amo , T Rojo . Moisture exposed layered oxide electrodes as Na-ion battery cathodes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(48): 18963–18975 https://doi.org/10.1039/C6TA07950D
77
W Xu , R Dang , L Zhou , Y Yang , T Lin , Q Guo , F Xie , Z Hu , F Ding , Y Liu . et al.. Conversion of surface residual alkali to solid electrolyte to enable Na-ion full cells with robust interfaces. Advanced Materials, 2023, 35(42): 2301314 https://doi.org/10.1002/adma.202301314
78
H R Yao , P F Wang , Y Gong , J Zhang , X Yu , L Gu , C Ou Yang , Y Yin , E Hu , X Yang . et al.. Designing air-stable O3-type cathode materials by combined structure modulation for Na-ion batteries. Journal of the American Chemical Society, 2017, 139(25): 8440–8443 https://doi.org/10.1021/jacs.7b05176
Z Huang , Z Gu , Y Heng , E Ang , H Geng , X Wu . Advanced layered oxide cathodes for sodium/potassium-ion batteries: development, challenges and prospects. Chemical Engineering Journal, 2023, 452: 139438 https://doi.org/10.1016/j.cej.2022.139438
81
Z Lu , J R Dahn . Intercalation of water in P2, T2 and O2 structure Az[CoxNi1/3–xMn2/3]O2. Chemistry of Materials, 2001, 13(4): 1252–1257 https://doi.org/10.1021/cm000721x
82
V Duffort , E Talaie , R Black , L Nazar . Uptake of CO2 in layered P2-Na0.67Mn0.5Fe0.5O2: insertion of carbonate anions. Chemistry of Materials, 2015, 27(7): 2515–2524 https://doi.org/10.1021/acs.chemmater.5b00097
83
G Ross , J Watts , M Hill , P Morrissey . Surface modification of poly(vinylidene fluoride) by alkaline treatment1. The degradation mechanism. Polymer, 2000, 41(5): 1685–1696 https://doi.org/10.1016/S0032-3861(99)00343-2
84
G Ross , J Watts , M Hill , P Morrissey . Surface modification of poly(vinylidene fluoride) by alkaline treatment. Part 2. Process modification by the use of phase transfer catalysts. Polymer, 2001, 42(2): 403–413 https://doi.org/10.1016/S0032-3861(00)00328-1
85
D Buchholz , L Chagas , C Vaalma , L Wu , S Passerini . Water sensitivity of layered P2/P3-NaxNi0.22Co0.11Mn0.66O2 cathode material. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(33): 13415–13421 https://doi.org/10.1039/C4TA02627F
86
T Zhou , H Wang , Y Wang , P Jiao , Z Hao , K Zhang , J Xu , J Liu , Y He , Y Zhang . et al.. Stabilizing lattice oxygen in slightly Li-enriched nickel oxide cathodes toward high-energy batteries. Chem, 2022, 8(10): 2817–2830 https://doi.org/10.1016/j.chempr.2022.07.023
87
J Feng , Z Chen , W Zhou , Z Hao . Origin and characterization of the oxygen loss phenomenon in the layered oxide cathodes of Li-ion batteries. Materials Horizons, 2023, 10(11): 4686–4709 https://doi.org/10.1039/D3MH00780D
88
P Venkatachalam , C Karra , K Duru , P Maram , A Madhavan , S Kalluri . Perspective-challenges and benchmarking in scale-up of Ni-rich cathodes for sodium-ion batteries. Journal of the Electrochemical Society, 2022, 169(7): 070536 https://doi.org/10.1149/1945-7111/ac8248
89
C Yang , S Xin , L Mai , Y You . Materials design for high-safety sodium-ion battery. Advanced Energy Materials, 2021, 11(2): 2000974 https://doi.org/10.1002/aenm.202000974
90
X Zheng , Z Cai , J Sun , J He , W Rao , J Wang , Y Zhang , Q Gao , B Han , K Xia . et al.. Nickel-rich layered oxide cathodes for lithium-ion batteries: failure mechanisms and modification strategies. Journal of Energy Storage, 2023, 58: 106405 https://doi.org/10.1016/j.est.2022.106405
91
X Li , L Liang , M Su , L Wang , Y Zhang , J Sun , Y Liu , L Hou , C Yuan . Multi-level modifications enabling chemomechanically stable Ni-rich O3-layered cathode toward wide-temperature-tolerance quasi-solid-state Na-ion batteries. Advanced Energy Materials, 2023, 13(9): 2203701 https://doi.org/10.1002/aenm.202203701
92
F Ding , C Zhao , D Zhou , Q Meng , D Xiao , Q Zhang , Y Niu , Y Li , X Rong , Y Lu . et al.. A novel Ni-rich O3-Na[Ni0.60Fe0.25Mn0.15]O2 cathode for Na-ion batteries. Energy Storage Materials, 2020, 30: 420–430 https://doi.org/10.1016/j.ensm.2020.05.013
93
S Chu , Y Zhong , K Liao , Z Shao . Layered Co/Ni-free oxides for sodium-ion battery cathode materials. Current Opinion in Green and Sustainable Chemistry, 2019, 17: 29–34 https://doi.org/10.1016/j.cogsc.2019.01.006
94
G Liu , W Xu , J Wu , Y Li , L Chen , S Li , Q Ren , J Wang . Unlocking high-rate O3 layered oxide cathode for Na-ion batteries via ion migration path modulation. Journal of Energy Chemistry, 2023, 83: 53–61 https://doi.org/10.1016/j.jechem.2023.04.029
95
T T Wei , X Liu , S J Yang , P F Wang , T F Yi . Regulating the electrochemical activity of Fe-Mn-Cu-based layer oxides as cathode materials for high-performance Na-ion battery. Journal of Energy Chemistry, 2023, 80: 603–613 https://doi.org/10.1016/j.jechem.2023.02.016
96
G Wan , W Dou , H Zhu , W Zhang , T Liu , L Wang , J Lu . Empowering higher energy sodium-ion battery cathode by oxygen chemistry. Interdisciplinary Materials, 2023, 2(3): 416–422 https://doi.org/10.1002/idm2.12091
97
X Wu , J Guo , D Wang , G Zhong , M McDonald , Y Yang . P2-type Na0.66Ni0.33–xZnxMn0.67O2 as new high-voltage cathode materials for sodium-ion batteries. Journal of Power Sources, 2015, 281: 18–26 https://doi.org/10.1016/j.jpowsour.2014.12.083
98
Q Shen , Y Liu , X Zhao , J Jin , X Song , Y Wang , X Qu , L Jiao . Unexpectedly high cycling stability induced by a high charge cut-off voltage of layered sodium oxide cathodes. Advanced Energy Materials, 2023, 13(6): 2203216 https://doi.org/10.1002/aenm.202203216
99
Y Han , Y Lei , J Ni , Y Zhang , Z Geng , P Ming , C Zhang , X Tian , J Shi , Y Guo . et al.. Single-crystalline cathodes for advanced Li-ion batteries: progress and challenges. Small, 2022, 18(43): 2107048 https://doi.org/10.1002/smll.202107048
100
J Hu , L Li , Y Bi , J Tao , J Lochala , D Liu , B Wu , X Cao , S Chae , C Wang . et al.. Locking oxygen in lattice: a quantifiable comparison of gas generation in polycrystalline and single crystal Ni-rich cathodes. Energy Storage Materials, 2022, 47: 195–202 https://doi.org/10.1016/j.ensm.2022.02.025
101
J Sun , C Sheng , X Cao , P Wang , P He , H Yang , Z Chang , X Yue , H Zhou . Restraining oxygen release and suppressing structure distortion in single-crystal Li-rich layered cathode materials. Advanced Functional Materials, 2022, 32(10): 2110295 https://doi.org/10.1002/adfm.202110295
102
J Darga , A Manthiram . Facile synthesis of O3-type NaNi0.5Mn0.5O2 single crystals with improved performance in sodium-ion batteries. ACS Applied Materials & Interfaces, 2022, 14(47): 52729–52737 https://doi.org/10.1021/acsami.2c12098
103
Z Deng , A Manthiram . Influence of cationic substitutions on the oxygen loss and reversible capacity of lithium-rich layered oxide cathodes. Journal of Physical Chemistry C, 2011, 115(14): 7097–7103 https://doi.org/10.1021/jp200375d
104
J Langdon , A Manthiram . A perspective on single-crystal layered oxide cathodes for lithium-ion batteries. Energy Storage Materials, 2021, 37: 143–160 https://doi.org/10.1016/j.ensm.2021.02.003
105
T Kimijima , N Zettsu , K Teshima . Growth manner of octahedral-shaped Li(Ni1/3Co1/3Mn1/3)O2 single crystals in molten Na2SO4. Crystal Growth & Design, 2016, 16(5): 2618–2623 https://doi.org/10.1021/acs.cgd.5b01723
106
S Gupta , Y Mao . Recent developments on molten salt synthesis of inorganic nanomaterials: a review. Journal of Physical Chemistry C, 2021, 125(12): 6508–6533 https://doi.org/10.1021/acs.jpcc.0c10981
107
J Li , A Cameron , H Li , S Glazier , D Xiong , M Chatzidakis , J Allen , G Botton , J Dahn . Comparison of single crystal and polycrystalline LiNi0.5Mn0.3Co0.2O2 positive electrode materials for high voltage Li-ion cells. Journal of the Electrochemical Society, 2017, 164(7): A1534–A1544 https://doi.org/10.1149/2.0991707jes
108
X Fan , Y Liu , X Ou , J Zhang , B Zhang , D Wang , G Hu . Unravelling the influence of quasi single-crystalline architecture on high-voltage and thermal stability of LiNi0.5Co0.2Mn0.3O2 cathode for lithium-ion batteries. Chemical Engineering Journal, 2020, 393: 124709 https://doi.org/10.1016/j.cej.2020.124709
109
X He , J Wang , B Qiu , E Paillard , C Ma , X Cao , H Liu , M Stan , H Liu , T Gallash . et al.. Durable high-rate capability Na0.44MnO2 cathode material for sodium-ion batteries. Nano Energy, 2016, 27: 602–610 https://doi.org/10.1016/j.nanoen.2016.07.021
110
D Su , C Wang , H Ahn , G Wang . Single crystalline Na0.7MnO2 nanoplates as cathode materials for sodium-ion batteries with enhanced performance. Chemistry, 2013, 19(33): 10884–10889 https://doi.org/10.1002/chem.201301563
111
V Pamidi , S Trivedi , S Behara , M Fichtner , M Reddy . Micron-sized single-crystal cathodes for sodium-ion batteries. iScience, 2022, 25(5): 104205 https://doi.org/10.1016/j.isci.2022.104205
112
G Hu , S Zhang , K Du , Z Peng , J Zeng , Z Fang , L Li , Y Zhang , J Huang , D Guan . et al.. Enhanced cycle performance and synthesis of LiNi0.6Co0.2Mn0.2O2 single-crystal through the assist of Ba ion. Journal of Power Sources, 2022, 542: 231784 https://doi.org/10.1016/j.jpowsour.2022.231784
113
S Zhang , G Hu , K Du , Z Peng , L Li , Y Zhang , Y Cao . Enhanced cycle performance and synthesis of LiNi0.6Co0.2Mn0.2O2 single-crystal through the assist of Bi ion. Electrochimica Acta, 2023, 470: 143280 https://doi.org/10.1016/j.electacta.2023.143280
114
J Hu , H Wang , B Xiao , P Liu , T Huang , Y Li , X Ren , Q Zhang , J Liu , X Ouyang . et al.. Challenges and approaches of single-crystal Ni-rich layered cathodes in lithium batteries. National Science Review, 2023, 10(12): nwad252 https://doi.org/10.1093/nsr/nwad252
115
L Ni , S Zhang , A Di , W Deng , G Zou , H Hou , X Ji . Challenges and strategies towards single-crystalline Ni-rich layered cathodes. Advanced Energy Materials, 2022, 12(31): 2201510 https://doi.org/10.1002/aenm.202201510
116
L Zhang , J Huang , M Song , C Lu , W Wu , X Wu . Single-crystal growth of P2-type layered oxides with increased exposure of {010} planes for high-performance sodium-ion batteries. ACS Applied Materials & Interfaces, 2023, 15(40): 47037–47048 https://doi.org/10.1021/acsami.3c10312
117
H Huang , L Zhang , H Tian , J Yan , J Tong , X Liu , H Zhang , H Huang , S Hao , J Gao . et al.. Pulse high temperature sintering to prepare single-crystal high nickel oxide cathodes with enhanced electrochemical performance. Advanced Energy Materials, 2023, 13(3): 2203188 https://doi.org/10.1002/aenm.202203188
118
L Li , G Hu , Y Cao , D Gong , Q Fu , Z Peng , K Du . Effect of grain size of single crystalline cathode material of LiNi0.65Co0.07Mn0.28O2 on its electrochemical performance. Electrochimica Acta, 2022, 435: 141386 https://doi.org/10.1016/j.electacta.2022.141386
C Rost , E Sachet , T Borman , A Moballegh , E Dickey , D Hou , J Jones , S Curtarolo , J Maria . Entropy-stabilized oxides. Nature Communications, 2015, 6(1): 8485 https://doi.org/10.1038/ncomms9485
121
S Aamlid , M Oudah , J Rottler , A Hallas . Understanding the role of entropy in high entropy oxides. Journal of the American Chemical Society, 2023, 145(11): 5991–6006 https://doi.org/10.1021/jacs.2c11608
122
R Zhang , C Wang , P Zou , R Lin , L Ma , L Yin , T Li , W Xu , H Jia , Q Li . et al.. Compositionally complex doping for zero-strain zero-cobalt layered cathodes. Nature, 2022, 610(7930): 67–73 https://doi.org/10.1038/s41586-022-05115-z
123
C Lin , H Liu , J Kang , C Yang , C Li , H Chen , S Huang , C Ni , Y Chuang , B Chen . et al.. In-situ X-ray studies of high-entropy layered oxide cathode for sodium-ion batteries. Energy Storage Materials, 2022, 51: 159–171 https://doi.org/10.1016/j.ensm.2022.06.035
124
K Tian , H He , X Li , D Wang , Z Wang , R Zheng , H Sun , Y Liu , Q Wang . Boosting electrochemical reaction and suppressing phase transition with a high-entropy O3-type layered oxide for sodium-ion batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2022, 10(28): 14943–14953 https://doi.org/10.1039/D2TA02451A
125
H Wang , X Gao , S Zhang , Y Mei , L Ni , J Gao , H Liu , N Hong , B Zhang , F Zhu . et al.. High-entropy Na-deficient layered oxides for sodium-ion batteries. ACS Nano, 2023, 17(13): 12530–12543 https://doi.org/10.1021/acsnano.3c02290
126
A Tripathi , A Rudola , S Gajjela , S Xi , P Balaya . Developing an O3 type layered oxide cathode and its application in 18650 commercial type Na-ion batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(45): 25944–25960 https://doi.org/10.1039/C9TA08991H
127
K Mukai , T Inoue , Y Kato , S Shirai . Superior low-temperature power and cycle performances of Na-ion battery over Li-ion battery. ACS Omega, 2017, 2(3): 864–872 https://doi.org/10.1021/acsomega.6b00551
128
J Zhou , J Liu , Y Li , Z Zhao , P Zhou , X Wu , X Tang , J Zhou . Reaching the initial coulombic efficiency and structural stability limit of P2/O3 biphasic layered cathode for sodium-ion batteries. Journal of Colloid and Interface Science, 2023, 638: 758–767 https://doi.org/10.1016/j.jcis.2023.02.001
129
Q Shi , R Qi , X Feng , J Wang , Y Li , Z Yao , X Wang , Q Li , X Lu , J Zhang . et al.. Niobium-doped layered cathode material for high-power and low-temperature sodium-ion batteries. Nature Communications, 2022, 13(1): 3205 https://doi.org/10.1038/s41467-022-30942-z
130
B Peng , Z Zhou , J Xu , N Ahmad , S Zeng , M Cheng , L Ma , Y Li , G Zhang . Crystal facet design in layered oxide cathode enables low-temperature sodium-ion batteries. ACS Materials Letters, 2023, 5(8): 2233–2242 https://doi.org/10.1021/acsmaterialslett.3c00625
131
Y Li , Q Shi , X Yin , J Wang , J Wang , Y Zhao , J Zhang . Construction nasicon-type NaTi2(PO4)3 nanoshell on the surface of P2-type Na0.67Co0.2Mn0.8O2 cathode for superior room/low-temperature sodium storage. Chemical Engineering Journal, 2020, 402: 126181 https://doi.org/10.1016/j.cej.2020.126181
132
Z Deng , Y Liu , L Wang , N Fu , Y Li , Y Luo , J Wang , X Xiao , X Wang , X Yang . et al.. Challenges of thermal stability of high-energy layered oxide cathode materials for lithium-ion batteries: a review. Materials Today, 2023, 69: 236–261 https://doi.org/10.1016/j.mattod.2023.07.024
133
Y Xie , G Xu , H Che , H Wang , K Yang , X Yang , F Guo , Y Ren , Z Chen , K Amine . et al.. Probing thermal and chemical stability of NaxNi1/3Fe1/3Mn1/3O2 cathode material toward safe sodium-ion batteries. Chemistry of Materials, 2018, 30(15): 4909–4918 https://doi.org/10.1021/acs.chemmater.8b00047
134
S Hwang , Y Lee , E Jo , K Y Chung , W Choi , S M Kim , W Y Chang . Investigation of thermal stability of P2-NaxCoO2 cathode materials for sodium ion batteries using real-time electron microscopy. ACS Applied Materials & Interfaces, 2017, 9(22): 18883–18888 https://doi.org/10.1021/acsami.7b04478
135
J Li , H Hu , J Wang , Y Xiao . Surface chemistry engineering of layered oxide cathodes for sodium-ion batteries. Carbon Neutralization, 2022, 1(2): 96–116 https://doi.org/10.1002/cnl2.19
136
J Jiao , K Wu , R Dang , N Li , X Deng , X Liu , Z Hu , X Xiao . A collaborative strategy with ionic conductive Na2SiO3 coating and Si doping of P2-Na0.67Fe0.5Mn0.5O2 cathode: an effective solution to capacity attenuation. Electrochimica Acta, 2021, 384: 138362 https://doi.org/10.1016/j.electacta.2021.138362
137
K Zhang , Z Xu , G Li , R Luo , C Ma , Y Wang , Y Zhou , Y Xia . Regulating phase transition and oxygen redox to achieve stable high-voltage O3-type cathode materials for sodium-ion batteries. Advanced Energy Materials, 2023, 13(45): 2302793 https://doi.org/10.1002/aenm.202302793
138
L Zhang , J Deshmukh , H Hijazi , Z Ye , M Johnson , M George , J Dahn , M Metzger . Impact of calcium on air stability of Na[Ni1/3Fe1/3Mn1/3]O2 positive electrode material for sodium-ion batteries. Journal of the Electrochemical Society, 2023, 170(7): 070514 https://doi.org/10.1149/1945-7111/ace55a
139
G Wan , B Peng , L Zhao , F Wang , L Yu , R Liu , G Zhang . Dual-strategy modification on P2Na0.67Ni0.33Mn0.67O2 realizes stable high-voltage cathode and high energy density full cell for sodium-ion batteries. SusMat, 2023, 3(1): 58–71 https://doi.org/10.1002/sus2.105
140
X Chen , S Zheng , P Liu , Z Sun , K Zhu , H Li , Y Liu , L Jiao . Fluorine substitution promotes air-stability of P’2-type layered cathodes for sodium-ion batteries. Small, 2023, 19(4): 2205789 https://doi.org/10.1002/smll.202205789
141
D Le , Z Zhou , J Li , H Fu , F Wu , Y Li , J Zheng , Z He . Air-stable manganese based cathode material enabled by organic protection layer for Na-ion batteries. Ceramics International, 2023, 49(10): 15451–15458 https://doi.org/10.1016/j.ceramint.2023.01.130
142
R Zhang , J Liang , C Zeng , J Chen , Y Ma , T Zhai , H Li . Air degradation and rehealing of high-voltage Na0.7Ni0.35Sn0.65O2 cathode for sodium ion batteries. Science China Materials, 2023, 66(1): 88–96 https://doi.org/10.1007/s40843-022-2166-9
143
C Xu , H Cai , Q Chen , X Kong , H Pan , Y Hu . Origin of air-stability for transition metal oxide cathodes in sodium-ion batteries. ACS Applied Materials & Interfaces, 2022, 14(4): 5338–5345 https://doi.org/10.1021/acsami.1c21103