1. Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 999077, China 2. Department of Chemistry, University of Oxford, Oxford OX1 3QR, UK 3. Synchrotron Radiation Research Center, Hsinchu 30076, China
The advancement of heterogeneous catalysts incorporating metal clusters in the nanometric size range has garnered significant attention due to their extraordinary catalytic activity and selectivity. The detailed characterization and understanding of the atomic structure of these metal clusters within catalysts is crucial for elucidating the underlying reaction mechanisms. In the present study, a distinctive three-atom PdNi cluster, characterized by two Pd atoms at terminal positions and a central Ni atom, was synthesized over mordenite zeolite. The presence of atomic PdNi clusters within the eight-membered ring side pocket area was confirmed by multiple advanced analytical techniques, including magic-angle spinning nuclear magnetic resonance spectroscopy, synchrotron X-ray powder diffraction, extended X-ray absorption fine structure spectroscopy, and high-angle annular dark-field scanning transmission electron microscopy. The catalytic activity of the confined active species was examined by the carbene-mediated reactions of ethyl-2-diazoacetate to ethyl-2-methoxyacetate as a model reaction. Compared to the Pd-mordenite and Ni-mordenite, the PdNi-mordenite catalyst incorporates a PdNi cluster, which demonstrates a superior performance, achieving 100% conversion and high selectivity under the same reaction conditions. Our study elucidates the potential of constructing bimetallic clusters in zeolites, providing valuable insights for developing new heterogeneous catalysts applicable to a wide range of catalytic processes.
H Arakawa , M Aresta , J N Armor , M A Barteau , E J Beckman , A T Bell , J E Bercaw , C Creutz , E Dinjus , D A Dixon . et al.. Catalysis research of relevance to carbon management: progress, challenges, and opportunities. Chemical Reviews, 2001, 101(4): 953–996 https://doi.org/10.1021/cr000018s
2
Y Xia , D Qiu , J Wang . Transition-metal-catalyzed cross-couplings through carbene migratory insertion. Chemical Reviews, 2017, 117(23): 13810–13889 https://doi.org/10.1021/acs.chemrev.7b00382
3
H L Su , L M Pérez , S J Lee , J H Reibenspies , H S Bazzi , D E Bergbreiter . Studies of ligand exchange in N-heterocyclic carbene silver(I) complexes. Organometallics, 2012, 31(10): 4063–4071 https://doi.org/10.1021/om300340w
4
C LiY Liu. Bridging Heterogeneous and Homogeneous Catalysis: Concepts, Strategies, and Applications. New Jersey: John Wiley & Sons, 2014
5
N Wang , Q Sun , J Yu . Ultrasmall metal nanoparticles confined within crystalline nanoporous materials: a fascinating class of nanocatalysts. Advanced Materials, 2019, 31(1): e1803966 https://doi.org/10.1002/adma.201803966
6
Y Chai , W Shang , W Li , G Wu , W Dai , N Guan , L Li . Noble metal particles confined in zeolites: synthesis, characterization, and applications. Advanced Science, 2019, 6(16): 1900299 https://doi.org/10.1002/advs.201900299
7
C T Campbell , S C Parker , D E Starr . The effect of size-dependent nanoparticle energetics on catalyst sintering. Science, 2002, 298(5594): 811–814 https://doi.org/10.1126/science.1075094
8
Q Sun , N Wang , R Bai , Y Hui , T Zhang , D A Do , P Zhang , L Song , S Miao , J Yu . Synergetic effect of ultrasmall metal clusters and zeolites promoting hydrogen generation. Advanced Science, 2019, 6(10): 1802350 https://doi.org/10.1002/advs.201802350
9
J Zhang , L Wang , Y Shao , Y Wang , B C Gates , F S A Xiao . Pd@zeolite catalyst for nitroarene hydrogenation with high product selectivity by sterically controlled adsorption in the zeolite micropores. Angewandte Chemie International Edition, 2017, 56(33): 9747–9751 https://doi.org/10.1002/anie.201703938
10
Q Sun , N Wang , Q Bing , R Si , J Liu , R Bai , P Zhang , M Jia , J Yu . Subnanometric hybrid Pd-M(OH)2, M = Ni, Co, clusters in zeolites as highly efficient nanocatalysts for hydrogen generation. Chem, 2017, 3(3): 477–493 https://doi.org/10.1016/j.chempr.2017.07.001
11
C K T Wun , H K Mok , T Chen , T S Wu , K Taniya , K Nakagawa , S Day , C C Tang , Z Huang , H Su . et al.. Atomically dispersed 3d metal bimetallic dual-atom catalysts and classification of the structural descriptors. Chem Catalysis, 2022, 2(9): 2346–2363 https://doi.org/10.1016/j.checat.2022.07.027
12
T Chen , W Yu , C K T Wun , T S Wu , M Sun , S Day , Z Li , B Yuan , Y Wang , M Li . et al.. Cu−Co dual-atom catalysts supported on hierarchical USY zeolites for an efficient cross-dehydrogenative C(sp2)-N coupling reaction. Journal of the American Chemical Society, 2023, 145(15): 8464–8473
13
Z Yu , A Zheng , Q Wang , L Chen , J Xu , J P Amoureux , F Deng . Insights into the dealumination of zeolite HY revealed by sensitivity-enhanced 27Al DQ-MAS NMR spectroscopy at high field. Angewandte Chemie International Edition, 2010, 49(46): 8657–8661 https://doi.org/10.1002/anie.201004007
A Satsuma , Y Sahashi , J Shibata , K Nishi , S Satokawa , K Itabashi , S Komai , H Yoshida , T Hattori . Stability of Pd(II) ion in side pockets of mordenite under hydrothermal conditions. Microporous and Mesoporous Materials, 2005, 81(1-3): 135–138 https://doi.org/10.1016/j.micromeso.2005.01.027
16
A Quindimil , U De-La-Torre , B Pereda-Ayo , J A González-Marcos , J R González-Velasco . Ni catalysts with La as promoter supported over Y- and BETA- zeolites for CO2 methanation. Applied Catalysis B: Environmental, 2018, 238: 393–403 https://doi.org/10.1016/j.apcatb.2018.07.034
17
L Guczi , G Boskovic , E Kiss . Bimetallic cobalt based catalysts. Catalysis Reviews. Science and Engineering, 2010, 52(2): 133–203 https://doi.org/10.1080/01614941003720134
18
K C Leung , S Hong , G Li , Y Xing , B K Y Ng , P L Ho , D Ye , P Zhao , E Tan , O Safonova . et al.. Confined Ru sites in a 13X zeolite for ultrahigh H2 production from NH3 decomposition. Journal of the American Chemical Society, 2023, 145(26): 14548–14561 https://doi.org/10.1021/jacs.3c05092
19
G Li , T Yoskamtorn , W Chen , C Foo , J Zheng , C Tang , S Day , A Zheng , M M Li , S C E Tsang . Thermal alteration in adsorption sites over SAPO-34 zeolite. Angewandte Chemie International Edition, 2022, 61(27): e202204500 https://doi.org/10.1002/anie.202204500
20
G Li , C Foo , X Yi , W Chen , P Zhao , P Gao , T Yoskamtorn , Y Xiao , S Day , C C Tang . et al.. Induced active sites by adsorbate in zeotype materials. Journal of the American Chemical Society, 2021, 143(23): 8761–8771 https://doi.org/10.1021/jacs.1c03166
21
M Boronat , C Martínez-Sánchez , D Law , A Corma . Enzyme-like specificity in zeolites: a unique site position in mordenite for selective carbonylation of methanol and dimethyl ether with CO. Journal of the American Chemical Society, 2008, 130(48): 16316–16323 https://doi.org/10.1021/ja805607m
22
R Liu , B Fan , W Zhang , L Wang , L Qi , Y Wang , S Xu , Z Yu , Y Wei , Z Liu . Increasing the number of aluminum atoms in T3 sites of a mordenite zeolite by low-pressure SiCl4 treatment to catalyze dimethyl ether carbonylation. Angewandte Chemie International Edition, 2022, 61(18): e202116990 https://doi.org/10.1002/anie.202116990
23
Z Liu , X Yi , G Wang , X Tang , G Li , L Huang , A Zheng . Roles of 8-ring and 12-ring channels in mordenite for carbonylation reaction: from the perspective of molecular adsorption and diffusion. Journal of Catalysis, 2019, 369: 335–344 https://doi.org/10.1016/j.jcat.2018.11.024
24
Z Liu , X Yang , L Cui , Z Shi , B Lu , X Guo , J Zhang , L Xu , Y Tang , Y Xiang . High-performance oxygen reduction electrocatalysis enabled by 3D PdNi nanocorals with hierarchical porosity. Particle & Particle Systems Characterization, 2018, 35(5): 1700366 https://doi.org/10.1002/ppsc.201700366
25
L Sahoo , R Garg , K Kaur , C Vinod , U K Gautam . Ultrathin twisty PdNi alloy nanowires as highly active ORR electrocatalysts exhibiting morphology-induced durability over 200 K cycles. Nano Letters, 2022, 22(1): 246–254 https://doi.org/10.1021/acs.nanolett.1c03704
26
T Wang , A Chutia , D J Brett , P R Shearing , G He , G Chai , I P Parkin . Palladium alloys used as electrocatalysts for the oxygen reduction reaction. Energy & Environmental Science, 2021, 14(5): 2639–2669 https://doi.org/10.1039/D0EE03915B
27
F R Fortea-Pérez , M Mon , J Ferrando-Soria , M Boronat , A Leyva-Perez , A Corma , J M Herrera , D Osadchii , J Gascon , D Armentano . et al.. The MOF-driven synthesis of supported palladium clusters with catalytic activity for carbene-mediated chemistry. Nature Materials, 2017, 16(7): 760–766 https://doi.org/10.1038/nmat4910
28
A Padwa , M D Weingarten . Cascade processes of metallo carbenoids. Chemical Reviews, 1996, 96(1): 223–270 https://doi.org/10.1021/cr950022h
29
E Nakamura , N Yoshikai , M Yamanaka . Mechanism of C–H bond activation/C–C bond formation reaction between diazo compound and alkane catalyzed by dirhodium tetracarboxylate. Journal of the American Chemical Society, 2002, 124(24): 7181–7192 https://doi.org/10.1021/ja017823o