Pd/Fe3O4 supported on bio-waste derived cellulosic-carbon as a nanocatalyst for C–C coupling and electrocatalytic application
Vishal Kandathil1, Akshay Moolakkil1, Pranav Kulkarni1, Alaap Kumizhi Veetil1, Manjunatha Kempasiddaiah1, Sasidhar Balappa Somappa2, R. Geetha Balakrishna1, Siddappa A. Patil1()
1. Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore 562112, India 2. Organic Chemistry Section, Chemical Sciences & Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Thiruvananthapuram 695019, India
The current work describes the synthesis of a new bio-waste derived cellulosic-carbon supported-palladium nanoparticles enriched magnetic nanocatalyst (Pd/Fe3O4@C) using a simple multi-step process under aerobic conditions. Under mild reaction conditions, the Pd/Fe3O4@C magnetic nanocatalyst demonstrated excellent catalytic activity in the Hiyama cross-coupling reaction for a variety of substrates. Also, the Pd/Fe3O4@C magnetic nanocatalyst exhibited excellent catalytic activity up to five recycles without significant catalytic activity loss in the Hiyama cross-coupling reaction. Also, we explored the use of Pd/Fe3O4@C magnetic nanocatalyst as an electrocatalyst for hydrogen evolution reaction. Interestingly, the Pd/Fe3O4@C magnetic nanocatalyst exhibited better electrochemical activity compared to bare carbon and magnetite (Fe3O4 nanoparticles) with an overpotential of 293 mV at a current density of 10 mA·cm–2.
J García-Serna, L Pérez-Barrigón, M Cocero. New trends for design towards sustainability in chemical engineering: green engineering. Chemical Engineering Journal, 2007, 133( 1-3): 7–30 https://doi.org/10.1016/j.cej.2007.02.028
C J Clarke, W C Tu, O Levers, A Brohl, J P Hallett. Green and sustainable solvents in chemical processes. Chemical Reviews, 2018, 118( 2): 747–800 https://doi.org/10.1021/acs.chemrev.7b00571
4
C Descorme, P Gallezot, C Geantet, C George. Heterogeneous catalysis: a key tool toward sustainability. ChemCatChem, 2012, 4( 12): 1897–1906 https://doi.org/10.1002/cctc.201200483
5
Monte R Di, J Kašpar. Heterogeneous environmental catalysis—a gentle art: CeO2−ZrO2 mixed oxides as a case history. Catalysis Today, 2005, 100( 1-2): 27–35 https://doi.org/10.1016/j.cattod.2004.11.005
6
I Beletskaya, V Tyurin. Recyclable nanostructured catalytic systems in modern environmentally friendly organic synthesis. Molecules, 2010, 15( 7): 4792–4814 https://doi.org/10.3390/molecules15074792
7
V Polshettiwar, R S Varma. Green chemistry by nano-catalysis. Green Chemistry, 2010, 12( 5): 743–754 https://doi.org/10.1039/b921171c
N M Julkapli, S Bagheri. Graphene supported heterogeneous catalysts: an overview. International Journal of Hydrogen Energy, 2015, 40( 2): 948–979 https://doi.org/10.1016/j.ijhydene.2014.10.129
12
R Houghton, F Hall, S J Goetz. Importance of biomass in the global carbon cycle. Journal of Geophysical Research. Biogeosciences, 2009, 114( G2): 1–13
13
S Bhuvaneshwari, H Hettiarachchi, J N Meegoda. Crop residue burning in India: policy challenges and potential solutions. International Journal of Environmental Research and Public Health, 2019, 16( 5): 832 https://doi.org/10.3390/ijerph16050832
14
J S Lim, Z A Manan, S R W Alwi, H Hashim. A review on utilisation of biomass from rice industry as a source of renewable energy. Renewable & Sustainable Energy Reviews, 2012, 16( 5): 3084–3094 https://doi.org/10.1016/j.rser.2012.02.051
15
R Singh, M Srivastava, A Shukla. Environmental sustainability of bioethanol production from rice straw in India: a review. Renewable & Sustainable Energy Reviews, 2016, 54 : 202–216 https://doi.org/10.1016/j.rser.2015.10.005
16
F Quignard, A Choplin. Cellulose: a new bio-support for aqueous phase catalysts. Chemical Communications, 2001, ( 1): 21–22 https://doi.org/10.1039/b007776n
17
C P Sekhar, S Kalidhasan, V Rajesh, N Rajesh. Bio-polymer adsorbent for the removal of malachite green from aqueous solution. Chemosphere, 2009, 77( 6): 842–847 https://doi.org/10.1016/j.chemosphere.2009.07.068
18
V Kandathil, M Kempasiddaiah, B Sasidhar, S A Patil. From agriculture residue to catalyst support; a green and sustainable cellulose-based dip catalyst for CC coupling and direct arylation. Carbohydrate Polymers, 2019, 223 : 115060 https://doi.org/10.1016/j.carbpol.2019.115060
19
R J Moon, A Martini, J Nairn, J Simonsen, J Youngblood. Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 2011, 40( 7): 3941–3994 https://doi.org/10.1039/c0cs00108b
20
V Kandathil, A K Veetil, A Patra, A Moolakkil, M Kempasiddaiah, S B Somappa, C S Rout, S A Patil. A green and sustainable cellulosic-carbon-shielded Pd-MNP hybrid material for catalysis and energy storage applications. Journal of Nanostructure in Chemistry, 2021, 11( 3): 395–407 https://doi.org/10.1007/s40097-020-00375-5
21
Y Zhang, N Hao, X Lin, S Nie. Emerging challenges in the thermal management of cellulose nanofibril-based supercapacitors, lithium-ion batteries and solar cells: a review. Carbohydrate Polymers, 2020, 234 : 115888 https://doi.org/10.1016/j.carbpol.2020.115888
22
A G Dumanlı, A H Windle. Carbon fibres from cellulosic precursors: a review. Journal of Materials Science, 2012, 47( 10): 4236–4250 https://doi.org/10.1007/s10853-011-6081-8
23
J Jayaprabha, M Brahmakumar, V Manilal. Banana pseudostem characterization and its fiber property evaluation on physical and bioextraction. Journal of Natural Fibers, 2011, 8( 3): 149–160 https://doi.org/10.1080/15440478.2011.601614
24
D Astruc. Palladium nanoparticles as efficient green homogeneous and heterogeneous carbon−carbon coupling precatalysts: a unifying view. Inorganic Chemistry, 2007, 46( 6): 1884–1894 https://doi.org/10.1021/ic062183h
25
A J McCue, J A Anderson. Recent advances in selective acetylene hydrogenation using palladium containing catalysts. Frontiers of Chemical Science and Engineering, 2015, 9( 2): 142–153 https://doi.org/10.1007/s11705-015-1516-4
26
V Kandathil, B Kulkarni, A Siddiqa, M Kempasiddaiah, B S Sasidhar, S A Patil. Immobilized N-heterocyclic carbene-palladium(II) complex on graphene oxide as efficient and recyclable catalyst for Suzuki−Miyaura cross-coupling and reduction of nitroarenes. Catalysis Letters, 2020, 150( 2): 384–403 https://doi.org/10.1007/s10562-019-03083-0
27
F Foubelo, C Nájera, M Yus. The Hiyama cross-coupling reaction: new discoveries. Chemical Record, 2016, 16( 6): 2521–2533 https://doi.org/10.1002/tcr.201600063
V Kandathil, A Siddiqa, A Patra, B Kulkarni, M Kempasiddaiah, B S Sasidhar, S A Patil, C S Rout, S A Patil. NHC-Pd complex heterogenized on graphene oxide for cross-coupling reactions and supercapacitor applications. Applied Organometallic Chemistry, 2020, 34( 11): e5924 https://doi.org/10.1002/aoc.5924
30
X F Wu, H Neumann, M Beller. Synthesis of heterocycles via palladium-catalyzed carbonylations. Chemical Reviews, 2013, 113( 1): 1–35 https://doi.org/10.1021/cr300100s
31
Y Hatanaka, T Hiyama. Cross-coupling of organosilanes with organic halides mediated by a palladium catalyst and tris(diethylamino) sulfonium difluorotrimethylsilicate. Journal of Organic Chemistry, 1988, 53( 4): 918–920 https://doi.org/10.1021/jo00239a056
32
K Tamao, K Kobayashi, Y Ito. Palladium-catalyzed cross-coupling reaction of alkenylalkoxysilanes with aryl and alkenyl halides in the presence of a fluoride ion. Tetrahedron Letters, 1989, 30( 44): 6051–6054 https://doi.org/10.1016/S0040-4039(01)93852-3
33
S Ichii, G Hamasaka, Y Uozumi. The Hiyama cross-coupling reaction at parts per million levels of Pd: in situ formation of highly active spirosilicates in glycol solvents. Chemistry, an Asian Journal, 2019, 14( 21): 3850–3854 https://doi.org/10.1002/asia.201901155
34
K Nozawa-Kumada, S Osawa, M Sasaki, I Chataigner, M Shigeno, Y Kondo. Deprotonative silylation of aromatic C–H bonds mediated by a combination of trifluoromethyltrialkylsilane and fluoride. Journal of Organic Chemistry, 2017, 82( 18): 9487–9496 https://doi.org/10.1021/acs.joc.7b01525
35
V Kandathil, R B Dateer, B Sasidhar, S A Patil, S A Patil. Green synthesis of palladium nanoparticles: applications in aryl halide cyanation and Hiyama cross-coupling reaction under ligand free conditions. Catalysis Letters, 2018, 148( 6): 1562–1578 https://doi.org/10.1007/s10562-018-2369-5
36
B Li, S Qiao, X Zheng, X Yang, Z Cui, S Zhu, Z Y Li, Q Y Liang. Pd coated MoS2 nanoflowers for highly efficient hydrogen evolution reaction under irradiation. Journal of Power Sources, 2015, 284 : 68–76 https://doi.org/10.1016/j.jpowsour.2015.03.021
37
S Grigoriev, P Millet, V Fateev. Evaluation of carbon-supported Pt and Pd nanoparticles for the hydrogen evolution reaction in PEM water electrolysers. Journal of Power Sources, 2008, 177( 2): 281–285 https://doi.org/10.1016/j.jpowsour.2007.11.072
38
S Grigoriev, M Mamat, K Dzhus, G Walker, P Millet. Platinum and palladium nano-particles supported by graphitic nano-fibers as catalysts for PEM water electrolysis. International Journal of Hydrogen Energy, 2011, 36( 6): 4143–4147 https://doi.org/10.1016/j.ijhydene.2010.07.013
39
K N Mahesh, R Balaji, K Dhathathreyan. Palladium nanoparticles as hydrogen evolution reaction (HER) electrocatalyst in electrochemical methanol reformer. International Journal of Hydrogen Energy, 2016, 41( 1): 46–51 https://doi.org/10.1016/j.ijhydene.2015.09.110
40
S Ghasemi, S R Hosseini, S Nabipour, P Asen. Palladium nanoparticles supported on graphene as an efficient electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2015, 40( 46): 16184–16191 https://doi.org/10.1016/j.ijhydene.2015.09.114
41
Y X Huang, X W Liu, X F Sun, G P Sheng, Y Y Zhang, G M Yan, S G Wang, A W Xu, H Q Yu. A new cathodic electrode deposit with palladium nanoparticles for cost-effective hydrogen production in a microbial electrolysis cell. International Journal of Hydrogen Energy, 2011, 36( 4): 2773–2776 https://doi.org/10.1016/j.ijhydene.2010.11.114
42
K Vishal, B D Fahlman, B S Sasidhar, S A Patil, S A Patil. Magnetic nanoparticle-supported N-heterocyclic carbene-palladium(II): a convenient, efficient and recyclable catalyst for Suzuki−Miyaura cross-coupling reactions. Catalysis Letters, 2017, 147( 4): 900–918 https://doi.org/10.1007/s10562-017-1987-7
43
V Kandathil, B D Fahlman, B S Sasidhar, S A Patil, S A Patil. A convenient, efficient and reusable N-heterocyclic carbene-palladium(II) based catalyst supported on magnetite for Suzuki−Miyaura and Mizoroki−Heck cross-coupling reactions. New Journal of Chemistry, 2017, 41( 17): 9531–9545 https://doi.org/10.1039/C7NJ01876B
44
J Gu, C Hu, W Zhang, A B Dichiara. Reagentless preparation of shape memory cellulose nanofibril aerogels decorated with Pd nanoparticles and their application in dye discoloration. Applied Catalysis B: Environmental, 2018, 237 : 482–490 https://doi.org/10.1016/j.apcatb.2018.06.002
45
J Gu, A Dichiara. Hybridization between cellulose nanofibrils and faceted silver nanoparticles used with surface enhanced Raman scattering for trace dye detection. International Journal of Biological Macromolecules, 2020, 143 : 85–92 https://doi.org/10.1016/j.ijbiomac.2019.12.018