Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2022, Vol. 16 Issue (10): 1514-1525   https://doi.org/10.1007/s11705-022-2158-y
  本期目录
Pd/Fe3O4 supported on bio-waste derived cellulosic-carbon as a nanocatalyst for C–C coupling and electrocatalytic application
Vishal Kandathil1, Akshay Moolakkil1, Pranav Kulkarni1, Alaap Kumizhi Veetil1, Manjunatha Kempasiddaiah1, Sasidhar Balappa Somappa2, R. Geetha Balakrishna1, Siddappa A. Patil1()
1. Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore 562112, India
2. Organic Chemistry Section, Chemical Sciences & Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Thiruvananthapuram 695019, India
 全文: PDF(4204 KB)   HTML
Abstract

The current work describes the synthesis of a new bio-waste derived cellulosic-carbon supported-palladium nanoparticles enriched magnetic nanocatalyst (Pd/Fe3O4@C) using a simple multi-step process under aerobic conditions. Under mild reaction conditions, the Pd/Fe3O4@C magnetic nanocatalyst demonstrated excellent catalytic activity in the Hiyama cross-coupling reaction for a variety of substrates. Also, the Pd/Fe3O4@C magnetic nanocatalyst exhibited excellent catalytic activity up to five recycles without significant catalytic activity loss in the Hiyama cross-coupling reaction. Also, we explored the use of Pd/Fe3O4@C magnetic nanocatalyst as an electrocatalyst for hydrogen evolution reaction. Interestingly, the Pd/Fe3O4@C magnetic nanocatalyst exhibited better electrochemical activity compared to bare carbon and magnetite (Fe3O4 nanoparticles) with an overpotential of 293 mV at a current density of 10 mA·cm–2.

Key wordsbio-waste    cellulosic-carbon    Pd/Fe3O4    Hiyama cross-coupling    hydrogen evolution reaction    recyclability
收稿日期: 2021-10-23      出版日期: 2022-10-17
Corresponding Author(s): Siddappa A. Patil   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2022, 16(10): 1514-1525.
Vishal Kandathil, Akshay Moolakkil, Pranav Kulkarni, Alaap Kumizhi Veetil, Manjunatha Kempasiddaiah, Sasidhar Balappa Somappa, R. Geetha Balakrishna, Siddappa A. Patil. Pd/Fe3O4 supported on bio-waste derived cellulosic-carbon as a nanocatalyst for C–C coupling and electrocatalytic application. Front. Chem. Sci. Eng., 2022, 16(10): 1514-1525.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-022-2158-y
https://academic.hep.com.cn/fcse/CN/Y2022/V16/I10/1514
Fig.1  
Fig.2  
Fig.3  
  
EntryBaseSolventPd/mol%Temperature/°CTime/hYield/% b)
1NaOHEthylene glycol1001
2NaOHEthylene glycol0.31000.2590
3NaOHEthylene glycol0.21000.590
4NaOHEthylene glycol0.11000.540
5NaOH1,4-Dioxane0.21000.520
6NaOHAcetonitrile0.2800.520
7NaOHToluene0.21000.535
8NaOHEthylene glycol0.2800.545
9NaOHEthylene glycol0.21200.2592
10KOHEthylene glycol0.21000.580
11K2CO3Ethylene glycol0.21000.580
12Na2CO3Ethylene glycol0.21000.590
13Cs2CO3Ethylene glycol0.21000.585
Tab.1  
  
Entry Aryl halide Product Time/min Yield/% b)
1 30 95
2 30 90
3 30 90
4 90 70
5 15 92
6 180 80
7 30 85
8 240 50
9 60 95
10 70 98
11 120 70
12 90 50
13 180 50
14 60 92
15 240 70
Tab.2  
Fig.4  
Fig.5  
Fig.6  
1 J García-Serna, L Pérez-Barrigón, M Cocero. New trends for design towards sustainability in chemical engineering: green engineering. Chemical Engineering Journal, 2007, 133( 1-3): 7–30
https://doi.org/10.1016/j.cej.2007.02.028
2 G Centi, P Ciambelli, S Perathoner, P Russo. Environmental catalysis: trends and outlook. Catalysis Today, 2002, 75( 1-4): 3–15
https://doi.org/10.1016/S0920-5861(02)00037-8
3 C J Clarke, W C Tu, O Levers, A Brohl, J P Hallett. Green and sustainable solvents in chemical processes. Chemical Reviews, 2018, 118( 2): 747–800
https://doi.org/10.1021/acs.chemrev.7b00571
4 C Descorme, P Gallezot, C Geantet, C George. Heterogeneous catalysis: a key tool toward sustainability. ChemCatChem, 2012, 4( 12): 1897–1906
https://doi.org/10.1002/cctc.201200483
5 Monte R Di, J Kašpar. Heterogeneous environmental catalysis—a gentle art: CeO2−ZrO2 mixed oxides as a case history. Catalysis Today, 2005, 100( 1-2): 27–35
https://doi.org/10.1016/j.cattod.2004.11.005
6 I Beletskaya, V Tyurin. Recyclable nanostructured catalytic systems in modern environmentally friendly organic synthesis. Molecules, 2010, 15( 7): 4792–4814
https://doi.org/10.3390/molecules15074792
7 V Polshettiwar, R S Varma. Green chemistry by nano-catalysis. Green Chemistry, 2010, 12( 5): 743–754
https://doi.org/10.1039/b921171c
8 I P Beletskaya, L M Kustov. Catalysis as an important tool of green chemistry. Russian Chemical Reviews, 2010, 79( 6): 441–461
https://doi.org/10.1070/RC2010v079n06ABEH004137
9 F Rodriguez-Reinoso. The role of carbon materials in heterogeneous catalysis. Carbon, 1998, 36( 3): 159–175
https://doi.org/10.1016/S0008-6223(97)00173-5
10 E Antolini. Carbon supports for low-temperature fuel cell catalysts. Applied Catalysis B: Environmental, 2009, 88( 1-2): 1–24
https://doi.org/10.1016/j.apcatb.2008.09.030
11 N M Julkapli, S Bagheri. Graphene supported heterogeneous catalysts: an overview. International Journal of Hydrogen Energy, 2015, 40( 2): 948–979
https://doi.org/10.1016/j.ijhydene.2014.10.129
12 R Houghton, F Hall, S J Goetz. Importance of biomass in the global carbon cycle. Journal of Geophysical Research. Biogeosciences, 2009, 114( G2): 1–13
13 S Bhuvaneshwari, H Hettiarachchi, J N Meegoda. Crop residue burning in India: policy challenges and potential solutions. International Journal of Environmental Research and Public Health, 2019, 16( 5): 832
https://doi.org/10.3390/ijerph16050832
14 J S Lim, Z A Manan, S R W Alwi, H Hashim. A review on utilisation of biomass from rice industry as a source of renewable energy. Renewable & Sustainable Energy Reviews, 2012, 16( 5): 3084–3094
https://doi.org/10.1016/j.rser.2012.02.051
15 R Singh, M Srivastava, A Shukla. Environmental sustainability of bioethanol production from rice straw in India: a review. Renewable & Sustainable Energy Reviews, 2016, 54 : 202–216
https://doi.org/10.1016/j.rser.2015.10.005
16 F Quignard, A Choplin. Cellulose: a new bio-support for aqueous phase catalysts. Chemical Communications, 2001, ( 1): 21–22
https://doi.org/10.1039/b007776n
17 C P Sekhar, S Kalidhasan, V Rajesh, N Rajesh. Bio-polymer adsorbent for the removal of malachite green from aqueous solution. Chemosphere, 2009, 77( 6): 842–847
https://doi.org/10.1016/j.chemosphere.2009.07.068
18 V Kandathil, M Kempasiddaiah, B Sasidhar, S A Patil. From agriculture residue to catalyst support; a green and sustainable cellulose-based dip catalyst for CC coupling and direct arylation. Carbohydrate Polymers, 2019, 223 : 115060
https://doi.org/10.1016/j.carbpol.2019.115060
19 R J Moon, A Martini, J Nairn, J Simonsen, J Youngblood. Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 2011, 40( 7): 3941–3994
https://doi.org/10.1039/c0cs00108b
20 V Kandathil, A K Veetil, A Patra, A Moolakkil, M Kempasiddaiah, S B Somappa, C S Rout, S A Patil. A green and sustainable cellulosic-carbon-shielded Pd-MNP hybrid material for catalysis and energy storage applications. Journal of Nanostructure in Chemistry, 2021, 11( 3): 395–407
https://doi.org/10.1007/s40097-020-00375-5
21 Y Zhang, N Hao, X Lin, S Nie. Emerging challenges in the thermal management of cellulose nanofibril-based supercapacitors, lithium-ion batteries and solar cells: a review. Carbohydrate Polymers, 2020, 234 : 115888
https://doi.org/10.1016/j.carbpol.2020.115888
22 A G Dumanlı, A H Windle. Carbon fibres from cellulosic precursors: a review. Journal of Materials Science, 2012, 47( 10): 4236–4250
https://doi.org/10.1007/s10853-011-6081-8
23 J Jayaprabha, M Brahmakumar, V Manilal. Banana pseudostem characterization and its fiber property evaluation on physical and bioextraction. Journal of Natural Fibers, 2011, 8( 3): 149–160
https://doi.org/10.1080/15440478.2011.601614
24 D Astruc. Palladium nanoparticles as efficient green homogeneous and heterogeneous carbon−carbon coupling precatalysts: a unifying view. Inorganic Chemistry, 2007, 46( 6): 1884–1894
https://doi.org/10.1021/ic062183h
25 A J McCue, J A Anderson. Recent advances in selective acetylene hydrogenation using palladium containing catalysts. Frontiers of Chemical Science and Engineering, 2015, 9( 2): 142–153
https://doi.org/10.1007/s11705-015-1516-4
26 V Kandathil, B Kulkarni, A Siddiqa, M Kempasiddaiah, B S Sasidhar, S A Patil. Immobilized N-heterocyclic carbene-palladium(II) complex on graphene oxide as efficient and recyclable catalyst for Suzuki−Miyaura cross-coupling and reduction of nitroarenes. Catalysis Letters, 2020, 150( 2): 384–403
https://doi.org/10.1007/s10562-019-03083-0
27 F Foubelo, C Nájera, M Yus. The Hiyama cross-coupling reaction: new discoveries. Chemical Record, 2016, 16( 6): 2521–2533
https://doi.org/10.1002/tcr.201600063
28 I Maluenda, O Navarro. Recent developments in the Suzuki–Miyaura reaction: 2010–2014. Molecules, 2015, 20( 5): 7528–7557
https://doi.org/10.3390/molecules20057528
29 V Kandathil, A Siddiqa, A Patra, B Kulkarni, M Kempasiddaiah, B S Sasidhar, S A Patil, C S Rout, S A Patil. NHC-Pd complex heterogenized on graphene oxide for cross-coupling reactions and supercapacitor applications. Applied Organometallic Chemistry, 2020, 34( 11): e5924
https://doi.org/10.1002/aoc.5924
30 X F Wu, H Neumann, M Beller. Synthesis of heterocycles via palladium-catalyzed carbonylations. Chemical Reviews, 2013, 113( 1): 1–35
https://doi.org/10.1021/cr300100s
31 Y Hatanaka, T Hiyama. Cross-coupling of organosilanes with organic halides mediated by a palladium catalyst and tris(diethylamino) sulfonium difluorotrimethylsilicate. Journal of Organic Chemistry, 1988, 53( 4): 918–920
https://doi.org/10.1021/jo00239a056
32 K Tamao, K Kobayashi, Y Ito. Palladium-catalyzed cross-coupling reaction of alkenylalkoxysilanes with aryl and alkenyl halides in the presence of a fluoride ion. Tetrahedron Letters, 1989, 30( 44): 6051–6054
https://doi.org/10.1016/S0040-4039(01)93852-3
33 S Ichii, G Hamasaka, Y Uozumi. The Hiyama cross-coupling reaction at parts per million levels of Pd: in situ formation of highly active spirosilicates in glycol solvents. Chemistry, an Asian Journal, 2019, 14( 21): 3850–3854
https://doi.org/10.1002/asia.201901155
34 K Nozawa-Kumada, S Osawa, M Sasaki, I Chataigner, M Shigeno, Y Kondo. Deprotonative silylation of aromatic C–H bonds mediated by a combination of trifluoromethyltrialkylsilane and fluoride. Journal of Organic Chemistry, 2017, 82( 18): 9487–9496
https://doi.org/10.1021/acs.joc.7b01525
35 V Kandathil, R B Dateer, B Sasidhar, S A Patil, S A Patil. Green synthesis of palladium nanoparticles: applications in aryl halide cyanation and Hiyama cross-coupling reaction under ligand free conditions. Catalysis Letters, 2018, 148( 6): 1562–1578
https://doi.org/10.1007/s10562-018-2369-5
36 B Li, S Qiao, X Zheng, X Yang, Z Cui, S Zhu, Z Y Li, Q Y Liang. Pd coated MoS2 nanoflowers for highly efficient hydrogen evolution reaction under irradiation. Journal of Power Sources, 2015, 284 : 68–76
https://doi.org/10.1016/j.jpowsour.2015.03.021
37 S Grigoriev, P Millet, V Fateev. Evaluation of carbon-supported Pt and Pd nanoparticles for the hydrogen evolution reaction in PEM water electrolysers. Journal of Power Sources, 2008, 177( 2): 281–285
https://doi.org/10.1016/j.jpowsour.2007.11.072
38 S Grigoriev, M Mamat, K Dzhus, G Walker, P Millet. Platinum and palladium nano-particles supported by graphitic nano-fibers as catalysts for PEM water electrolysis. International Journal of Hydrogen Energy, 2011, 36( 6): 4143–4147
https://doi.org/10.1016/j.ijhydene.2010.07.013
39 K N Mahesh, R Balaji, K Dhathathreyan. Palladium nanoparticles as hydrogen evolution reaction (HER) electrocatalyst in electrochemical methanol reformer. International Journal of Hydrogen Energy, 2016, 41( 1): 46–51
https://doi.org/10.1016/j.ijhydene.2015.09.110
40 S Ghasemi, S R Hosseini, S Nabipour, P Asen. Palladium nanoparticles supported on graphene as an efficient electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2015, 40( 46): 16184–16191
https://doi.org/10.1016/j.ijhydene.2015.09.114
41 Y X Huang, X W Liu, X F Sun, G P Sheng, Y Y Zhang, G M Yan, S G Wang, A W Xu, H Q Yu. A new cathodic electrode deposit with palladium nanoparticles for cost-effective hydrogen production in a microbial electrolysis cell. International Journal of Hydrogen Energy, 2011, 36( 4): 2773–2776
https://doi.org/10.1016/j.ijhydene.2010.11.114
42 K Vishal, B D Fahlman, B S Sasidhar, S A Patil, S A Patil. Magnetic nanoparticle-supported N-heterocyclic carbene-palladium(II): a convenient, efficient and recyclable catalyst for Suzuki−Miyaura cross-coupling reactions. Catalysis Letters, 2017, 147( 4): 900–918
https://doi.org/10.1007/s10562-017-1987-7
43 V Kandathil, B D Fahlman, B S Sasidhar, S A Patil, S A Patil. A convenient, efficient and reusable N-heterocyclic carbene-palladium(II) based catalyst supported on magnetite for Suzuki−Miyaura and Mizoroki−Heck cross-coupling reactions. New Journal of Chemistry, 2017, 41( 17): 9531–9545
https://doi.org/10.1039/C7NJ01876B
44 J Gu, C Hu, W Zhang, A B Dichiara. Reagentless preparation of shape memory cellulose nanofibril aerogels decorated with Pd nanoparticles and their application in dye discoloration. Applied Catalysis B: Environmental, 2018, 237 : 482–490
https://doi.org/10.1016/j.apcatb.2018.06.002
45 J Gu, A Dichiara. Hybridization between cellulose nanofibrils and faceted silver nanoparticles used with surface enhanced Raman scattering for trace dye detection. International Journal of Biological Macromolecules, 2020, 143 : 85–92
https://doi.org/10.1016/j.ijbiomac.2019.12.018
[1] FCE-21092-OF-KV_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed