Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2023, Vol. 17 Issue (12): 2156-2160   https://doi.org/10.1007/s11705-023-2371-3
  本期目录
The CatMath: an online predictive platform for thermal + electrocatalysis
Heng Liu1, Hao Zheng1, Zhenhe Jia2, Binghui Zhou2, Yan Liu2, Xuelu Chen2, Yajun Feng2, Li Wei3, Weijie Yang2, Hao Li1()
1. Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
2. Department of Power Engineering, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, China
3. School of Chemical and Biomolecule Engineering, The University of Sydney, Sydney NSW 2006, Australia
 全文: PDF(1181 KB)   HTML
Abstract

The catalytic volcano activity models are the quantified and visualized tools of the Sabatier principle for heterogeneous catalysis, which can depict the intrinsic activity optima and trends of a catalytic reaction as a function of the reaction descriptors, i.e., the bonding strengths of key reaction species. These models can be derived by microkinetic modeling and/or free energy changes in combination with the scaling relations among the reaction intermediates. Herein, we introduce the CatMath—an online platform for generating a variety of common and industrially important thermal + electrocatalysis. With the CatMath, users can request the volcano models for available reactions and analyze their materials of interests as potential catalysts. Besides, the CatMath provides the function of the online generation of Surface Pourbaix Diagram for surface state analysis under electrocatalytic conditions, which is an essential step before analyzing the activity of an electrocatalytic surface. All the model generation and analysis processes are realized by cloud computing via a user-friendly interface.

Key wordsCatMath    catalysis    volcano activity plots    Surface Pourbaix Diagrams    online platform
收稿日期: 2023-09-12      出版日期: 2023-11-30
Corresponding Author(s): Hao Li   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2023, 17(12): 2156-2160.
Heng Liu, Hao Zheng, Zhenhe Jia, Binghui Zhou, Yan Liu, Xuelu Chen, Yajun Feng, Li Wei, Weijie Yang, Hao Li. The CatMath: an online predictive platform for thermal + electrocatalysis. Front. Chem. Sci. Eng., 2023, 17(12): 2156-2160.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-023-2371-3
https://academic.hep.com.cn/fcse/CN/Y2023/V17/I12/2156
Fig.1  
Reaction name Model type Descriptor Parameter
Electrocatalysis
Hydrogen evolution reaction 1D EH EH
Oxygen evolution reaction 1D ?GO– ?GHO ?GO?GHO
2D ?GO– ?GHO, ?GHO ?GO– ?GHO, ?GHO
Oxygen reduction reaction 2e, 1D ?GHO ?GHO
4e, 1D ?GHO ?GHO
2D EHO, EHOO EHO, EHOO
2D EHO, EHO EHO, EHO
CO2 reduction reaction HCOOH, 2D ?GHCOOH, ?GOCHO ?GHCOOH, ?GOCHO
CO, 2D ?GCO, ?GCOOH ?GCO, ?GCOOH
Water oxidation reaction Thermal dynamic, 1D ?GHO ?GHO
Kinetic, 1D
Electrolytic propylene epoxidation 1D EO U (*), EO
Thermal catalysis
CO oxidation 2D ECO, EO T (*), ECO, EO
Ethylene epoxidation Activity, 1D EO T (*), P (*), EO
Selectivity, 1D
Nitrite reduction NH3, 2D EN, E N H3 EN, E N H3
N2, 2D EN, E N2 EN, E N2
Hg oxidation 1D EO T (*), P (*), EO
NO oxidation 1D EO T (*), P (*), EO
Tab.1  
Fig.2  
Fig.3  
1 Z W Seh, J Kibsgaard, C F Dickens, I Chorkendorff, J K Nørskov, T F Jaramillo. Combining theory and experiment in electrocatalysis: insights into materials design. Science, 2017, 355(6321): eaad4998
https://doi.org/10.1126/science.aad4998
2 A J Medford, A Vojvodic, J S Hummelshøj, J Voss, F Abild-Pedersen, F Studt, T Bligaard, A Nilsson, J K Nørskov. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. Journal of Catalysis, 2015, 328: 36–42
https://doi.org/10.1016/j.jcat.2014.12.033
3 A J Medford, P G Moses, K W Jacobsen, A A Peterson. A career in catalysis: Jens Kehlet Nørskov. ACS Catalysis, 2022, 12(15): 9679–9689
https://doi.org/10.1021/acscatal.2c02217
4 B Hammer, J K Nørskov. Theoretical surface science and catalysis—calculations and concepts. Advances in Catalysis, 2000, 45: 71–129
https://doi.org/10.1016/S0360-0564(02)45013-4
5 J K Nørskov, F Abild-Pedersen, F Studt, T Bligaard. Density functional theory in surface chemistry and catalysis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(3): 937–943
https://doi.org/10.1073/pnas.1006652108
6 G Jones, T Bligaard, F Abild-Pedersen, J K Nørskov. Using scaling relations to understand trends in the catalytic activity of transition metals. Journal of Physics Condensed Matter, 2008, 20(6): 064239
https://doi.org/10.1088/0953-8984/20/6/064239
7 J K Nørskov, T Bligaard, A Logadottir, J R Kitchin, J G Chen, S Pandelov, U Stimming. Trends in the exchange current for hydrogen evolution. Journal of the Electrochemical Society, 2005, 152(3): J23–J26
https://doi.org/10.1149/1.1856988
8 J K Nørskov, J Rossmeisl, A Logadottir, L Lindqvist, J R Kitchin, T Bligaard, H Jónsson. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. Journal of Physical Chemistry B, 2004, 108(46): 17886–17892
https://doi.org/10.1021/jp047349j
9 H Falsig, B Hvolbæk, I S Kristensen, T Jiang, T Bligaard, C H Christensen, J K Nørskov. Trends in the catalytic CO oxidation activity of nanoparticles. Angewandte Chemie International Edition, 2008, 47(26): 4835–4839
https://doi.org/10.1002/anie.200801479
10 C F Dickens, C Kirk, J K Nørskov. Insights into the electrochemical oxygen evolution reaction with ab initio calculations and microkinetic modeling: beyond the limiting potential volcano. Journal of Physical Chemistry C, 2019, 123(31): 18960–18977
https://doi.org/10.1021/acs.jpcc.9b03830
11 H A Hansen, J B Varley, A A Peterson, J K Nørskov. Understanding trends in the electrocatalytic activity of metals and enzymes for CO2 reduction to CO. Journal of Physical Chemistry Letters, 2013, 4(3): 388–392
https://doi.org/10.1021/jz3021155
12 S Pan, H Li, D Liu, R Huang, X Pan, D Ren, J Li, M Shakouri, Q X Zhang, M J Wang. et al.. Efficient and stable noble-metal-free catalyst for acidic water oxidation. Nature Communications, 2022, 13(1): 2294
https://doi.org/10.1038/s41467-022-30064-6
13 I C Man, H Y Su, F Calle-Vallejo, H A Hansen, J I Martínez, N G Inoglu, J Kitchin, T F Jaramillo, J K Nørskov, J Rossmeisl. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem, 2011, 3(7): 1159–1165
https://doi.org/10.1002/cctc.201000397
14 H Liu, D Zhang, S M Holmes, C D’Agostino, H Li. Origin of the superior oxygen reduction activity of zirconium nitride in alkaline media. Chemical Science, 2023, 14(34): 9000–9009
https://doi.org/10.1039/D3SC01827J
15 H Xu, L Zhu, Y Nan, Y Xie, D Cheng. Revisit the role of metal dopants in enhancing the selectivity of Ag-catalyzed ethylene epoxidation: optimizing oxophilicity of reaction site via cocatalytic mechanism. ACS Catalysis, 2021, 11(6): 3371–3383
https://doi.org/10.1021/acscatal.0c04951
16 X Liu, J Xiao, H Peng, X Hong, K Chan, J K Nørskov. Understanding trends in electrochemical carbon dioxide reduction rates. Nature Communications, 2017, 8(1): 15438
https://doi.org/10.1038/ncomms15438
17 J K Nørskov, T Bligaard, J Rossmeisl, C H Christensen. Towards the computational design of solid catalysts. Nature Chemistry, 2009, 1(1): 37–46
https://doi.org/10.1038/nchem.121
18 S R Kelly, C Kirk, K Chan, J K Nørskov. Electric field effects in oxygen reduction kinetics: rationalizing pH dependence at the Pt(111), Au(111), and Au(100) Electrodes. Journal of Physical Chemistry C, 2020, 124(27): 14581–14591
https://doi.org/10.1021/acs.jpcc.0c02127
19 A J Medford, C Shi, M J Hoffmann, A C Lausche, S R Fitzgibbon, T Bligaard, J K Nørskov. CatMAP: a software package for descriptor-based microkinetic mapping of catalytic trends. Catalysis Letters, 2015, 145(3): 794–807
https://doi.org/10.1007/s10562-015-1495-6
20 H Liu, X Jia, A Cao, L Wei, C D’Agostino, H Li. The surface states of transition metal X-ides under electrocatalytic conditions. Journal of Chemical Physics, 2023, 158(12): 124705
https://doi.org/10.1063/5.0147123
21 H A Hansen, J Rossmeisl, J K Nørskov. Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT. Physical Chemistry Chemical Physics, 2008, 10(25): 3722–3730
https://doi.org/10.1039/b803956a
22 O Vinogradova, D Krishnamurthy, V Pande, V Viswanathan. Quantifying confidence in DFT-predicted surface pourbaix diagrams of transition-metal electrode-electrolyte interfaces. Langmuir, 2018, 34(41): 12259–12269
https://doi.org/10.1021/acs.langmuir.8b02219
23 W Yang, Z Jia, B Zhou, L Wei, Z Gao, H Li. Surface states of dual-atom catalysts should be considered for analysis of electrocatalytic activity. Communications Chemistry, 2023, 6(1): 6
https://doi.org/10.1038/s42004-022-00810-4
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed