Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2008, Vol. 2 Issue (3) : 253-256    https://doi.org/10.1007/s11705-008-0049-5
Construction of PS/PNIPAM core-shell particles and hollow spheres by using hydrophobic interaction and thermosensitive phase separation
ZHU Dongmei, WANG Fei, GAO Cuiling, XU Zheng
State Key Laboratory of Coordination Chemistry, Laboratory of Solid State Microstructures Department of Chemistry, Nanjing University;
 Download: PDF(160 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract This paper reports an easy and effective way to fabricate polystyrene/poly (N-isopropylacrylamide) (PS/PNIPAM) core-shell particles and PNIPAM hollow spheres. The main point of the method is to take advantage of the hydrophobic interaction between initiator and PS particles. The hydrophobic azodiisobutyronitriles automatically concentrate around the PS particles and initiate polymerization of N-isopropylacrylamide (NIPAM) and the crosslinker methylene bisacrylamide (MBA), which dissolve in the aqueous phase, at the surface of the PS nanoparticles. Then, PNIPAM adheres to the PS particles to form a core-shell structure as a result of their hydrophobic interaction. This interaction is due to the unique property of PNIPAM, namely, its ability to transition from hydrophilic to hydrophobic when the temperature rises to 32°C. Furthermore, the hollow PNIPAM spheres were obtained by etching the PS core with chloroform.
Issue Date: 05 September 2008
 Cite this article:   
WANG Fei,ZHU Dongmei,GAO Cuiling, et al. Construction of PS/PNIPAM core-shell particles and hollow spheres by using hydrophobic interaction and thermosensitive phase separation[J]. Front. Chem. Sci. Eng., 2008, 2(3): 253-256.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-008-0049-5
https://academic.hep.com.cn/fcse/EN/Y2008/V2/I3/253
1 Jeong B, Bae Y H, Lee D S, Kim S W . Biodegradableblock copolymers as injectable drug-delivery systems. Nature, 1997, 388: 860–862.
doi:10.1038/42218
2 Kurisawa M, Terano M, Yui N . Doublestimuli-responsive degradable hydrogels for drugdelivery: interpenetrating polymer networks composed of oligopeptide-terminatedpoly(ethylene glycol) and dextran. MacromolRapid Commun, 1995, 16: 663–666.
doi:10.1002/marc.1995.030160905
3 Brøndsted H, Kopecek J . Drug delivery to the colon:in vitro and in vivo degradation. PharmRes, 1992, 9: 1540–1545.
doi:10.1023/A:1015847921435
4 Miyata T, Asami N, Uragami T . Preparation of an antigen-sensitive hydrogel using antigen-antibodybindings. Macromolecules, 1999, 32: 2082–2084.
doi:10.1021/ma981659g
5 Holtz J H, Asher S A, Munro C H, Asher S A . Intelligentpolymerized crystalline colloidal arrays: novel chemical sensor materials. Anal Chem, 1998, 70: 780–791.
doi:10.1021/ac970853i
6 Holtz J H, Asher S A . Polymerized colloidal crystalhydrogel films as intelligent chemical sensing materials. Nature, 1997, 389: 829–832.
doi:10.1038/39834
7 Ouali L, Stoll S, Pefferkorn E, Elaissari A, Lanet V, Pichot C, Mandrand B . Coagulationof antibody-sensitized latexes in the presence of antigen. Polym Adv Technol, 1995, 6: 541–546.
doi:10.1002/pat.1995.220060716
8 Heskins M, Guillet J E . Solution properties of poly(N-isopropylacrylamide). J Macromol Sci Chem, 1968, 8: 1441–1455.
doi:10.1080/10601326808051910
9 Yan L, Yu M, Markus D, Matthias B . Thermosensitivecore-shell particles as carriers for Ag nanoparticles: modulatingthe catalytic activity by a phase transition in networks. Angew Chem Int Ed, 2006, 45: 813–816.
doi:10.1002/anie.200502731
10 Chen C W, Chen M Q, Takeshi S, Mitsuru A . In-siteformation of silver nanoparticles on poly(N-isopropylacrylamide)-coated polystyrene microspheres. Adv Mater, 1998, 10(14): 1122–1126.
doi:10.1002/(SICI)1521‐4095(199810)10:14<1122::AID‐ADMA1122>3.0.CO;2‐N
11 Sun Q H, Deng Y L . Encapsulation of polystyrenelatex with temperature-responsive poly(N-isopropylacrylamide) via a self-assembling approach and the adsorptionbehaviors therein. Langmuir, 2005, 21: 5812–5816.
doi:10.1021/la050403i
12 Dingenouts N, Seelenmeyer S, Deike I, Rosenfeldt S, Ballau M, Lindner P, Narayanan T . Analysisof thermosensitive core-shell colloids by small-angle neutron scatteringincluding contrast variation. Phys ChemChem Phys, 2001, 3: 1169–1174.
doi:10.1039/b009104i
13 Cheng Y, Jayachandran N K, Donald E B, Fan J, Chi W . Laser-light-scattering study of internal motions of polymerchains grafted on spherical latex particles. J Phys Chem B, 2004, 108: 18479–1848.
doi:10.1021/jp047403w
14 Thomas H, Charles D D, Wolfgang E, Charles D D, Wolfgang E, Karl K . PNIPAM-co-polystyrenecore-shell microgels: structure, swelling behavior, and crystallization. Langmuir, 2004, 20: 4330–4335.
doi:10.1021/la049546f
15 Zha L S, Zhang Y, Yang W L, Fu S . Monodispersetemperature-sensitive microcontainers. Adv Mater, 2002, 14: 1090–1092.
doi:10.1002/1521‐4095(20020805)14:15<1090::AID‐ADMA1090>3.0.CO;2‐6
16 Zou D Z, Sun L Q, Aklonis J J . Model filled polymers. VIII: Synthesis of crosslinkedpolymeric beads by seed polymerization.J Polym Sci Part A: Polymer Chemistry, 1992, 30: 1463–1475.
doi:10.1002/pola.1992.080300726
17 Kim S H, Son W K, Kim Y J, Kang E, Kim D . Synthesis of polystyrene/poly(butyl acrylate) core-shelllatex and its surface morphology. J ApplPolym Sci, 2003, 88: 595–601.
doi:10.1002/app.11495
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed