Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Eng Chin    2009, Vol. 3 Issue (3) : 235-239    https://doi.org/10.1007/s11705-009-0020-0
RESEARCH ARTICLE
Performance of inverse fluidized bed bioreactor in treating starch wastewater
M. RAJASIMMAN(), C. KARTHIKEYAN
Environmental Engineering Laboratory, Department of Chemical Engineering, Annamalai University, Annamalai Nagar- 608002, Tamil Nadu, India
 Download: PDF(126 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Aerobic digestion of starch industry wastewater was carried out in an inverse fluidized bed bioreactor using low-density (870 kg/m3) polypropylene particles. Experiments were carried out at different initial substrate concentrations of 2250, 4475, 6730, and 8910 mg COD/L and for various hydraulic retention times (HRT) of 40, 32, 24, 16, and 8 h. Degradation of organic matter was studied at different organic loading rates (OLR) by varying the HRT and the initial substrate concentration. From the results it was observed that the maximum COD removal of 95.6% occurred at an OLR of 1.35 kg COD/(m3·d) and the minimum of 51.8% at an OLR of 26.73 kg COD/(m3·d). The properties of biomass accumulation on the surface of particles were also studied. It was observed that constant biomass loading was achieved over the entire period of operation.

Keywords inverse fluidization      low-density particles      polypropylene      starch      biofilm     
Corresponding Author(s): RAJASIMMAN M.,Email:raja_simms@yahoo.com   
Issue Date: 05 September 2009
 Cite this article:   
M. RAJASIMMAN,C. KARTHIKEYAN. Performance of inverse fluidized bed bioreactor in treating starch wastewater[J]. Front Chem Eng Chin, 2009, 3(3): 235-239.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-009-0020-0
https://academic.hep.com.cn/fcse/EN/Y2009/V3/I3/235
1 Schugerl K. Biofluidization: Application of the fluidization technique in biotechnology. Canadian journal of chemical engineering , 1989, 67: 178-184
doi: 10.1002/cjce.5450670203
2 Sokol W. Operating parameters for a gas-liquid-solid fluidized bed bioreactor with a low-density biomass support. Biochemical Engineering Journal , 2001, 8: 203-212
doi: 10.1016/S1369-703X(01)00100-0
3 Karamanev D G. Application of inverse fluidization in wastewater treatment: from laboratory to full-scale bioreactors. Environmental progress , 1996, 15: 194-196
doi: 10.1002/ep.670150319
4 Karamanev D, Nikolov L. Experimental study of the inverse fluidized bed biofilm reactor. Canadian Journal of Chemical Engineering , 1987, 65: 214-217
doi: 10.1002/cjce.5450650204
5 Nehrukumar V. Modified rotating biological contactors for the treatment of sago wastewater. Dissertation for the Doctoral Degree . India: Annamalai University, 2002, 65-68
6 Rajasimman M, Karthikeyan C. Aerobic digestion of starch wastewater in a fluidized bed bioreactor with low-density biomass support. Journal of Hazardous Materials , 2007, 143: 82-86
doi: 10.1016/j.jhazmat.2006.08.071
7 Garcia-Calderon D, Buffiere P, Moletta R. Influence of biomass accumulation on bed expansion characteristics of a down flow anaerobic fluidized bed reactor. Biotechnology and Bioengineering , 1998, 57: 136-144
doi: 10.1002/(SICI)1097-0290(19980120)57:2<136::AID-BIT2>3.0.CO;2-O
8 Nikolov L N, Karamanev D G. The inverse fluidized bed biofilm reactor: a new laboratory scale apparatus for biofilm research. Journal of Fermentation and Bioengineering , 1990, 69: 265-267
doi: 10.1016/0922-338X(90)90226-M
9 Setiadi T. Predicting the bed expansion of an anaerobic fluidized bed bioreactor. Water Science Technology , 1995, 31: 181-191
doi: 10.1016/0273-1223(95)00420-R
10 Shieh W K, Sutton P M, Kos P. Predicting reactor biomass concentration in a fluidized bed system. Journal of the Water Pollution Control Federation , 1981, 53: 1574-1584
11 Rajasimman M. Treatment of industry effluent in a fluidized bed bioreactor with low-density biomass support. Dissertation for the Doctoral Degree . India: Annamalai University, 2007, 92-95
12 Choi Y C, Kim D S, Park T J. Wastewater treatment in a pilot scale inverse fluidized-bed biofilm reactor. Biotechnology Techniques , 1995, 9: 35-40
doi: 10.1007/BF00152997
13 Arnaiz C, Elmaleh S, Lebrato J. Start up of an anaerobic inverse turbulent bed reactor fed with wine distillery wastewater using pre-colonised bioparticles. Water Science and Technology , 2005, 51:153-158
14 Al-Dibouni M R, Garside J. Particle mixing and classification in liquid fluidized beds. Trans Int Chemical Engrs , 1979, 57: 94-103
15 Hermanovicz S W, Ganczarczyk J J. Some fluidization characteristics of biological beds. Biotechnology and Bioengineering , 1983, 25: 1321-1330
doi: 10.1002/bit.260250512
[1] Weixia Wang, Shuai Zhou, Zhong Xin, Yaoqi Shi, Shicheng Zhao. Polydimethylsiloxane assisted supercritical CO2 foaming behavior of high melt strength polypropylene grafted with styrene[J]. Front. Chem. Sci. Eng., 2016, 10(3): 396-404.
[2] Yan Zhang,Pingqiang Gao,Lin Zhao,Yizhong Chen. Preparation and swelling properties of a starch-g-poly(acrylic acid)/organo-mordenite hydrogel composite[J]. Front. Chem. Sci. Eng., 2016, 10(1): 147-161.
[3] Huan GU, Dacheng REN. Materials and surface engineering to control bacterial adhesion and biofilm formation: A review of recent advances[J]. Front Chem Sci Eng, 2014, 8(1): 20-33.
[4] Qiang XIAO, Xiaodan TANG, Yefeng LIU, Yijun ZHONG, Weidong ZHU. Comparison study on strategies to prepare nanocrystalline Li2ZrO3-based absorbents for CO2 capture at high temperatures[J]. Front Chem Sci Eng, 2013, 7(3): 297-302.
[5] Dongming QI, Xiaoli ZHAO, Zhijie CHEN, Peng HUANG, Jun CAO. Dispersion of a novel phenolic rigid organic filler in isotactic polypropylene matrix by solution-mixing and melt-mixing[J]. Front Chem Sci Eng, 2012, 6(4): 395-402.
[6] Huijuan CHU, Hongliang WEI, Jing ZHU, Shouyin HU. Preparation of starch esters with crosslinking structures derived from dianhydride[J]. Front Chem Sci Eng, 2011, 5(1): 51-54.
[7] K. Manikandan, T. Viruthagiri. Simultaneous saccharification and fermentation of wheat bran flour into ethanol using coculture of amylotic Aspergillus niger and thermotolerant Kluyveromyces marxianus[J]. Front Chem Eng Chin, 2009, 3(3): 240-249.
[8] Heming LIN, Dongming QI, Jian HAN, Zhiqi CAI, Minghua WU. Phenolic rigid organic filler/isotactic polypropylene composites. III. Impact resistance property[J]. Front Chem Eng Chin, 2009, 3(2): 176-181.
[9] QI Dongming, SHAO Jianzhong, WU Minghua, NITTA Kohhei. Phenolic rigid organic filler/isotactic polypropylene composites. II. Tensile properties [J]. Front. Chem. Sci. Eng., 2008, 2(4): 396-401.
[10] QI Dongming, YANG Lei, WU Minghua, LIN Heming, NITTA Kohhei. Phenolic rigid organic filler/isotactic polypropylene composites. I. Preparation[J]. Front. Chem. Sci. Eng., 2008, 2(3): 236-241.
[11] CHEN Hanjia, SHI Xuhua, ZHU Yafei, ZHANG Yi, XU Jiarui. Synthesis and characterization of macromolecular surface modifier PP--PEG for polypropylene[J]. Front. Chem. Sci. Eng., 2008, 2(1): 102-108.
[12] KE Yangchuan, SUN Mingzhuo, SONG Yanxin, YANG GuangFu. Preparation and properties of nano SiO2 core-shell structured additives and their nanocomposite with polypropylene[J]. Front. Chem. Sci. Eng., 2007, 1(1): 76-80.
[13] LIN Zhidan, ZENG Chunlian, MAI Kancheng. Investigation on multiple-melting behavior of nano-CaCO3/polypropylene composites[J]. Front. Chem. Sci. Eng., 2007, 1(1): 81-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed