Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2010, Vol. 4 Issue (3) : 314-321    https://doi.org/10.1007/s11705-009-0271-9
Research articles
Desulfurization mechanism of FCC gasoline: A review
Liang ZHAO,Yan CHEN,Jinsen GAO,Yu CHEN,
State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China;
 Download: PDF(392 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract This paper reviews the most important developments on the desulfurization mechanism of Fluid Catalytic Cracking (FCC) gasoline. First, the origin of sulfur compounds in FCC gasoline and the current developed desulfurization approaches and technologies are briefly introduced, and then the researches on desulfurization mechanism are summarized from experimental and theoretical perspectives. Further researches on the desulfurization mechanism will lay a foundation for optimizing desulfurization sorbents and technologies.
Issue Date: 05 September 2010
 Cite this article:   
Yan CHEN,Liang ZHAO,Jinsen GAO, et al. Desulfurization mechanism of FCC gasoline: A review[J]. Front. Chem. Sci. Eng., 2010, 4(3): 314-321.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-009-0271-9
https://academic.hep.com.cn/fcse/EN/Y2010/V4/I3/314
Babich I V, Moulijin J. Scienceand technology of novel processes for deep desulfurization of oilrefinery streams a review. Fuel, 2003, 82: 607–631

doi: 10.1016/S0016-2361(02)00324-1
Song C. An overview of new approaches to deep desulfurizationfor ultra-clean gasoline, diesel fuel and jet fuel. Catal Today, 2003, 86: 211–263

doi: 10.1016/S0920-5861(03)00412-7
Bruneta S, Meya D, Pérot G, Bouchy C, Diehl F. On the hydrodesulfurizationof FCC gasoline: a review. Appl Catal A:General, 2005, 278: 143–172

doi: 10.1016/j.apcata.2004.10.012
Hatanaka S, Yamada M, Sadakane O. Hydrodesulfurization of catalyticcracked gasoline. 1. inhibiting effects of olefins on HDS of alkyl(benzo)thiophenes contained in catalytic cracked gasoline. Ind Eng Chem Res, 1997, 36: 1519–1523

doi: 10.1021/ie9603777
Cheng W C, Kim G, Peters A W, Zhao X, Rajagopalan K, Ziebarth M S, Pereira C J. Environmental fluid catalytic cracking technology. Catal Rev Sci Eng, 1998, 40: 39–79

doi: 10.1080/01614949808007105
Leflaive P, Lemberton J L, Pérot G, Mirgain C, Carriat J Y, Colin J M. On the origin of sulfur impuritiesin fluid catalytic cracking gasoline―Reactivity of thiophenederivatives and of their possible precursors under FCC conditions. Appl Catal A: General, 2002, 227: 201–215

doi: 10.1016/S0926-860X(01)00936-X
Yin C, Zhu G, Xia D. Determination of organic sulfur compoundsin naphtha. Part I. Identification and quantitative analysis of sulfidesin FCC and RFCC naphthas. Am Chem Soc PreprDiv Pet Chem, 2002, 47: 391–395
Yin C, Zhu G, Xia D. Determination of organic sulfur compoundsin naphtha. Part II. Identification and quantitative analysis of thiophenesin FCC and RFCC naphthas. Am Chem Soc PreprDiv Pet Chem, 2002, 47: 398–401
Mochida I, Choi K H. An overviewof hydrodesulfurization and hydrodenitrogenation. J Japan Petroleum Insitute, 2004, 47: 145–163

doi: 10.1627/jpi.47.145
Kerby M C, Degnan J T F, Marler D O, Beck J S. Advanced catalyst technology and applications for highquality fuels and lubricants. Catal Today, 2005, 104: 55–63

doi: 10.1016/j.cattod.2005.03.028
Li M F, Xia G F, Chu Y. Preparation of selective hydrodesulfurizationcatalyst RSDS-1 for FCC naphtha. PetroleumProcessing and Petrochemicals, 2003, 34: 4–7
Zhao L P, Hu Y K, Pang H. Development of new processes for FCCgasoline HDS/olefin reducing in FRIPP. Industrial Catalysis, 2004, 12: 24–26
Zhao L P, Zhou Y, Duan W Y. Development and application of OCT-Mprocess for selective hydrodesulfurization of FCC gasoline. Industrial Catalysis, 2004, 12: 16–19
Zhao L P, Zhou Y, Duan W Y. OCT-M FCC gasoline selective hydrodesulfurizationtechnology. Petroleum Refinery Engineering, 2004, 34: 6–8
Qin X H, Huang L, Zhao L P. Development and commercial applicationof FRS process for full range FCC gasoline hydrodesulfurization. Contemporary Chemical Industry, 2007, 36: 37–39
Salazar J A, Cabrera L M, Palmisano E, Garcia W J, Solari R B. US Patent, 5770047, 1998
Li D D, Shi Y H, Yang Q Y. Low sulfur low olefin gasoline productionby R IDOS technology. Engineering Science, 2004, 6: 1–8
Chen X, Cai W, Yu X Z. Manufacture and application of catalystsfor FCC gasoline hydrodesulfurization (HDS) and olefin reduction. Industrial Catalysis, 2005, 13: 18–21
Zhao L P, Li Y, Liu J H. Development of OTA technology for olefinremoval of full range FCC gasoline. PetrochemicalTechnology, 2003, 32: 944–945
Hu Y K, Zhao L P, Li Y. Development of OTA technology for olefinremoval of full range FCC gasoline. TheChinese Journal of Nonferrous Metals, 2004, 14: 317–322
Gislason J. Phillips sulfur-removal process nears commercialization. Oil Gas J, 2002, 99: 74–76
Irvine R L. US Patent, 5730860, 1998-3
Gentry J, Khanmamedov T, Wytcherley R W. Gt-Desulfsm takes a profitable look at desulfurization. Chem Technol Fuels Oils, 2002, 38: 150–153

doi: 10.1023/A:1016248200123
Grace W R. Grace receives technology award. Membrane Technology, 2005, 12: 5
Shan H H, Li C Y, Yang C H, Zhao H, Zhao B Y, Zhang J F. Mechanistic studies on thiophene species cracking overUSY zeolite. Catalysis Today. 2002, 77: 117–126

doi: 10.1016/S0920-5861(02)00238-9
Aksenov D G, Klimov O V, Echevskii G V, Paukshtis E A, Budneva A A. Thiophene conversion in the BIMF process. React. Kinet Catal Lett, 2004, 83:187–194.

doi: 10.1023/B:REAC.0000037393.85994.cf
Chica A, Strohmaier K, Iglesia E. Adsorption, desorption, andconversion of thiophene on H-ZSM5. Langmuir, 2004, 20: 10982–10991

doi: 10.1021/la048320+
Chica A, Strohmaier K, Iglesia E. Effects of zeolite structureand aluminum content on thiophene adsorption, desorption, and surfacereactions. Appl Catal B, 2005, 60: 223–232

doi: 10.1016/j.apcatb.2005.02.031
Tawara K, Nishimura T, Iwanami H. Ultra-deep hydrodesulfurization of kerosene for fuel cell system (Part 2) regeneration of sulfur-poisonednickel catalyst in hydrogen and finding of auto-regenerative nickelcatalyst. Sekiyu Gakkaishi (Journal ofthe Japan Petroleum Institute), 2000, 43: 114–120
Bezeverkhyy I, Ryzhikov A, Gadacz G, Bellat J P. Kinetics of thiophene reactive adsorption on Ni/SiO2and Ni/ZnO. Catalysis Today, 2008, 130: 199–205

doi: 10.1016/j.cattod.2007.06.038
Saintigny X, van Santen R A, Clémendot S, Hutschka F. A theoretical study of the solid acidcatalyzed desulfurization of thiophene. J Catal, 1999, 183: 107–118

doi: 10.1006/jcat.1998.2384
Rozanska X, van Santen R A, Hutschka F. A DFT study of the crackingreaction of thiophene activated by small zeolitic clusters. J Catal, 2001, 200: 79–90

doi: 10.1006/jcat.2001.3182
Rozanska X, van Santen R A, Hutschka F, Hafner J. A periodic density functional theory study of thiophenicderivative cracking catalyzed by mordenite. J Catal, 2003, 215: 20–29

doi: 10.1016/S0021-9517(02)00148-3
Li B R, Guo W P, Yuan S P, Hu J, Wang J G, Jiao H J. A theoretical investigation into the thiophene-crackingmechanism over pure Br?nsted acidic zeolites. J Catal, 2008, 253: 212–220

doi: 10.1016/j.jcat.2007.10.006
Mitchell P C H, Green D A, Payen E, Tomkinson J, Parker S F. Interaction of thiophenewith a molybdenum disulfide catalyst―an inelastic neutron scatteringstudy. Phys Chem Chem Phys, 1999, 1: 3357–3363

doi: 10.1039/a902617g
Mills P, Korlann S, Bussell M E, Reynolds M A, Ovchinnikov M V, Angelici R J, Stinner C, Weber T, Prins R. Vibrational study of organometallic complexeswith thiophene ligands: models for adsorbed thiophene on hydrodesulfurizationcatalysts. J Phys Chem A, 2001, 105: 4418–4429

doi: 10.1021/jp010258r
Tarbuck T L, McCrea K R, Logan J W, Heiser J L, Bussell M E. Identification of the adsorption mode of thiophene on sulfided Mocatalysts. J Phys Chem B, 1998, 102: 7845–7857

doi: 10.1021/jp982009h
Mills P, Phillips D C, Woodruff B P, Main R, Bussell M E. Investigation of the adsorption and reactions of thiophene on sulfidedCu, Mo, and Rh catalysts. J Phys Chem B, 2000, 104: 3237–3249

doi: 10.1021/jp993299k
Wiegand B C, Friend C M. Model studies of the desulfurization reactions on metal surfacesand in organometallic complexes. Chem Rev, 1992, 92: 491–504

doi: 10.1021/cr00012a001
Cristol S, Paul J F, Schovsbo C, Veilly E, Payen E. DFT study of thiophene adsorptionon molybdenum sulfide. J Catal, 2006, 239: 145–153

doi: 10.1016/j.jcat.2006.01.015
Itamar B J, Alexander M S, Alcino P A, Luiz E P B, José Carlos A S, Maurício H C D. Densityfunctional theory molecular simulation of thiophene adsorption onMoS2 including microwave effects. J Molecular Structure: Theochem, 2007, 822: 80–88

doi: 10.1016/j.theochem.2007.07.020
Mittendorfer F, Hafner J. Initialsteps in the desulfurization of thiophene/Ni(100)-A DFT study. J Catal, 2003, 214: 234–241

doi: 10.1016/S0021-9517(02)00149-5
Morin C, Eichler A, Hirschl R, Sautet P, Hafner J. DFTstudy of adsorption and dissociation of thiophene molecules on Ni(11 0). Surface Science, 2003, 540: 474–490

doi: 10.1016/S0039-6028(03)00888-4
Orita H, Itoh N. Adsorptionof thiophene on Ni (1 0 0), Cu (1 0 0), and Pt (1 0 0) surfaces: abinitio periodic density functional study. Surface Science, 2004, 550: 177–184

doi: 10.1016/j.susc.2003.12.014
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed