Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2010, Vol. 4 Issue (3) : 270-274    https://doi.org/10.1007/s11705-009-0273-7
Research articles
Monte Carlo simulation of the diffusion-limited aggregating process of particle suspension systems
Jiajing XU1,Lin ZHANG1,Yongjian TANG1,Wei DAI2,Wenwen SHAN3,
1.Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China; 2.Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China;Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China; 3.Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China;College of Mathematics and Information Science, North China Institute of Water Conservancy and Hydroelectric Power, Zhengzhou 450011, China;
 Download: PDF(176 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The aggregating process of particle suspension systems is a very universal phenomena and crucial for various processes both in nature and in industry. In this paper, the aggregating process was simulated with off-lattice diffusion-limited cluster-cluster aggregation (DLCA) Monte Carlo programs. The self-similar fractal structures of aggregates have been clearly demonstrated by the statistical analysis of gyration radius distribution and the existence of a scaling distribution of the reduced cluster size. The fractal dimension determined from the relationship between mass and gyration radius of aggregates was 1.80 or so. The fractal dimension of the aggregates drawn from the radial distribution function and structure factor of a single aggregate is about 1.90–2.10. It was also showed that, along with the increasing of particle volume fraction, the fractal dimension will increase in a nearly square root manner, and the spatial range of the fractal structure appearing becomes narrower. Also, the gelation transition can only occur in a particle suspension system where the particle volume fraction is greater than a critical value.
Issue Date: 05 September 2010
 Cite this article:   
Lin ZHANG,Jiajing XU,Yongjian TANG, et al. Monte Carlo simulation of the diffusion-limited aggregating process of particle suspension systems[J]. Front. Chem. Sci. Eng., 2010, 4(3): 270-274.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-009-0273-7
https://academic.hep.com.cn/fcse/EN/Y2010/V4/I3/270
Benuzzi A, Koenig M, Krishnan J, Faral B, Nazarov W, Temporal M, Batani D, Muller L, Torsiello F, Hall T, Grandjouan N. Dynamicsof laser produced shocks in foam-solid targets, Phys Plasma, 1998, 5(8): 2827–2829

doi: 10.1063/1.873031
Watt R G, Duke J, Fontes C J, Gobby P L, Hollis R V, Kopp R A, Mason R J, Wilson D C, Verdon C P, Boehly T R, Knauer J P, Meyerhofer D D, Smalyuk V, Town R P J, Iwase A, Willi O. Laser imprint reduction using a low-densityfoam buffer as a thermal smoothing layer at 351nm wavelength. Phys Rev Lett, 1998, 81(21): 4644–4647

doi: 10.1103/PhysRevLett.81.4644
Norimatsu T, Nagai K, Takaki T, Yamanaka T. Issuesin capsule fabrication and injection into a wet-walled IFE reactor. Fusion Eng Design, 2001, 55(4): 387–396

doi: 10.1016/S0920-3796(01)00182-X
Friedlander S K. Smoke, Dust and Haze: Fundamentals of Aerosol Dynamics. 2nd Ed. Oxford: Oxford University Press, 2000
Family F, Landau D P. Kinetics of Aggregation and Gelation. Amsterdam: North-Holland, 1984
Kim A Y, Hauch K D, Berg J C, Martin J E, Anderson R A. Linear chains and chain-likefractals from electrostatic heteroaggregation. J Coll Int Science, 2003, 260 (1): 149–159

doi: 10.1016/S0021-9797(03)00033-X
Dhaubhadel R, Pierce F, Chakrabarti A, Sorensen C M. Hybrid superaggregate morphology as a result of aggregationin a cluster-dense aerosol. Phys Rev E, 2006, 73: 011404

doi: 10.1103/PhysRevE.73.011404
Hasmy A, Jullien R. Sol-gelprocess simulation by cluster-cluster aggregation. J of Non-Cryst Solids, 1995, 186: 342–348

doi: 10.1016/0022-3093(95)00079-8
González A E, Ramirez-Santiago G. Spatialordering and structure factor scaling in the simulations of colloidaggregation. Phys Rev Lett, 1995,74: 1238–1241

doi: 10.1103/PhysRevLett.74.1238
Weitz D A, Huang J S, Lin M Y, Sung J. Dynamicsof diffusion-limited kinetic aggregation. Phys Rev Lett, 53, 1984: 1657–1660

doi: 10.1103/PhysRevLett.53.1657
Martin J E, Keefer K D. Scattering below the sol-gel transition. Phys Rev A, 1986, 34: 4988–4992

doi: 10.1103/PhysRevA.34.4988
Broide M L, Cohen R J. Experimentalevidence of dynamic scaling in colloidal aggregation. Phys Rev Lett, 1990, 64: 2026–2029

doi: 10.1103/PhysRevLett.64.2026
Carpineti M, Giglio M. Spinodal-typedynamics in fractal aggregation of colloidal clusters. Phys Rev Lett, 1992, 68: 3327–3330

doi: 10.1103/PhysRevLett.68.3327
Bibette J, Mason T G, Gang H, Weitz D A. Kinetically induced ordering in gelation of emulsions. Phys Rev Lett, 1992, 69: 981–984

doi: 10.1103/PhysRevLett.69.981
González Agustín E. Universality of colloid aggregationin the reaction limit: the computer simulations. Phys Rev Lett, 1993, 71: 2248–2251

doi: 10.1103/PhysRevLett.71.2248
Lach-hab M, Gonzalez A E, Blaisten-Barojas E. Concentrationdependence of structural and dynamical quantities in colloidal aggregation:computer simulations. Physical Review E, 1996, 54(5): 5456–5462

doi: 10.1103/PhysRevE.54.5456
Vicsek T. Fractal Growth Phenomena. 2ndEd. Singapore: World Scientific, 1992, 215–223
Gimel J C, Durand D, Nicolai T. Transition between flocculationand percolation of a diffusion-limited cluster-cluster aggregationprocess using three-dimensional Monte Carlo simulation. Physical Review B, 1995, 51(17): 11348–11357

doi: 10.1103/PhysRevB.51.11348
Pierce F G. Aggregation in colloids and aerosols. Dissertation forthe Doctoral Degree. Kansas: Kansas State University, 2007, 34–37
Allen M P, Tildesley D J. Computer Simulation of Liquids. Oxford: Clarendon Press, 1989, 149–152
Lach-hab M, Gonzalez A E, Blaisten-Barojas E. Structure functionand fractal dimension of diffusion-limited colloidal aggregates. Physical Review E, 1998, 57(4): 4520–4527

doi: 10.1103/PhysRevE.57.4520
van Dongen P G J, Ernst M H. Dynamic scaling in the kinetics of clustering. Phys Rev Lett, 1985, 54: 1396–1399

doi: 10.1103/PhysRevLett.54.1396
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed