Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2010, Vol. 4 Issue (3) : 280-282    https://doi.org/10.1007/s11705-009-0278-2
Research articles
Many-body dissipative particle dynamics simulation of wetting phenomena
Ying ZHAO1,Ye YUE1,Xianren ZHANG1,Shuangyang LI1,Atul SAJJANHAR2,
1.School of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; 2.School of Information Technology, Deakin University, 221 Burwood HWY, Burwood, VIC 3125, Australia;
 Download: PDF(106 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract With the development of the simulation of particle dynamics, the traditional dissipative particle dynamics (DPD) method can not satisfy the needs of research in static or dynamic wetting phenomena. However, the Many-body DPD approach extends the ability of the traditional method to simulate the interface between solid and liquid or some other situation. In this paper, we propose a Many-body DPD program to simulate the solid-liquid interface and get satisfactory results.
Issue Date: 05 September 2010
 Cite this article:   
Ye YUE,Ying ZHAO,Xianren ZHANG, et al. Many-body dissipative particle dynamics simulation of wetting phenomena[J]. Front. Chem. Sci. Eng., 2010, 4(3): 280-282.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-009-0278-2
https://academic.hep.com.cn/fcse/EN/Y2010/V4/I3/280
de Gennes P G. Wetting: statics and dynamics. Rev Mod Phys, 1985, 57: 827―863

doi: 10.1103/RevModPhys.57.827
Oron A, Davis S H, Bankoff S G. Long-scale evolution of thinliquid films. Rev Mod Phys, 1997, 699: 31―80
Claudio C, Bjorn H, Thomas Gl, Roland Z, Michael M, Mark S. Dynamic capillary wetting studied with dissipative particledynamics. New Journal of Physics, 2008, 10: 043009-1―043006-16
Wang Y M, Jiang W H, Miller S, Eckstein E. Dissipative particle dynamics simulation of on-chip hydrodynamicchromatography. Journal of ChromatographyA, 2008, 1198-1199: 140―143

doi: 10.1016/j.chroma.2008.05.055
Hoogerbrugge P J, Koelman J M V A. Shell research B V simulating microscopic hydrodynamic phenomenawith dissipative particle dynamics. EurophysLett, 1992, 19(3): 155―160

doi: 10.1209/0295-5075/19/3/001
Feng J, Liu H L, Hua Y. Micro-phase separation of diblock copolymerin a nanosphere: dissipative particle dynamics approach. Fluid Phase Equilibria, 2007, 261: 50―57

doi: 10.1016/j.fluid.2007.06.015
Altenhoff M A, Walther H J, Koumoutsakos P. A stochastic boundary forcingfor dissipative particle dynamics. Journalof Computational Physics, 2007, 225: 1125―1127

doi: 10.1016/j.jcp.2007.01.015
Warren P B. Vapor-liquid coexistence in many-body dissipative particledynamics. Physical Review E, 2003, 68(6): 066702-1―066702-8
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed