Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2010, Vol. 4 Issue (1) : 10-17    https://doi.org/10.1007/s11705-009-0291-5
Research articles
Developing macromolecular therapeutics: the future drug-of-choice
Huining HE1,Victor C. YANG1,Weibing DONG2,Junbo GONG2,Jingkang WANG2,
1.Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, Tianjin University, Tianjin 300072, China;State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China;School of Chemical Engineering, Tianjin University, Tianjin 300072, China;Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI 48109-1065, USA; 2.Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, Tianjin University, Tianjin 300072, China;State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China;School of Chemical Engineering, Tianjin University, Tianjin 300072, China;
 Download: PDF(130 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Macromolecular drugs including peptides, proteins, antibodies, polysaccharides and nucleic acids have been widely used for therapy of major diseases such as carcinoma and AIDS as well as cardiovascular and neurodegenerative disorders among other medical conditions. Due to their unmatched properties of high selectivity and efficiency, macromolecular drugs have been recognized as the drug-of-choice of the future. Since worldwide progress on macromolecular therapeutics still remains in the infant stage and is therefore wide open for equal-ground competition, R&D related to macromolecular drugs should be considered as the main point of focus in China in setting up its strategic plans in pharmaceutical development. In this article, research strategies and drug delivery approaches that should be adopted to enhance the therapeutic effects of macromolecular drugs are reviewed. In addition, comments concerning how to implement such strategies to excel from competition in this challenging research field, such as the design of innovative and highly effective delivery systems of macromolecular drugs with self-owned intellectual property rights, are provided.
Issue Date: 05 March 2010
 Cite this article:   
Victor C. YANG,Huining HE,Weibing DONG, et al. Developing macromolecular therapeutics: the future drug-of-choice[J]. Front. Chem. Sci. Eng., 2010, 4(1): 10-17.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-009-0291-5
https://academic.hep.com.cn/fcse/EN/Y2010/V4/I1/10
Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Delivery Rev, 2002, 54: 631–651

doi: 10.1016/S0169-409X(02)00044-3
Dreher M R, Liu W, Michelich C R, Dewhirst M W, Yuan F, Chilkoti A. Tumor vascular permeability, accumulation, and penetrationof macromolecular drug carriers. J NatlCancer Inst, 2006, 98: 335–344
Maeda H, Seymour L W, Miyamoto Y. Conjugates of anticancer agents and polymers: advantagesof macromolecular therapeutics in vivo. Bioconjugate Chem, 2002, 3: 351–362

doi: 10.1021/bc00017a001
Takakura Y, Hashida M. Macromolecular drug carriersystems in cancer chemotherapy: macromolecular prodrugs. Crit Rev in Oncol Hematol, 1995, 18: 207–231

doi: 10.1016/1040-8428(94)00131-C
Defoort J P, Nardelli B, Huang W, Ho D D, Tam J P. Macromolecular assemblage in the designof a synthetic AIDS vaccine. Proc NatlAcad Sci USA, 1992, 89: 3879–3883

doi: 10.1073/pnas.89.9.3879
Hamajima K, Bukawa H, Fukushima J, Kawamoto S, Kaneko T, Sekigawa K I, Tanaka S I, Tsukuda M, Okuda K. A macromolecular multicomponent peptide vaccine preparedusing the glutaraldehyde conjugation method with strong immunogenicityfor HIV-1. Clin Immunol Immunopathol, 1995, 77: 374–379

doi: 10.1006/clin.1995.1165
Greenberg S, Frishman W. Co-enzyme Q10: a new drugfor cardiovascular disease. J Clin Pharmacol, 1990, 30: 596–608
Torchilin V P. Targeting of drugs and drug carriers within the cardiovascular system. Adv Drug Delivery Rev, 1995, 17: 75–101

doi: 10.1016/0169-409X(95)00042-6
Chang C-T L, Liou H-Y, Tang H L, Sung H Y. Activation,purification and properties of beta-amylase from sweet potatoes (Ipomoeabatatas). Biotechnol Appl Biochem, 1996, 24: 13–18
Noda T, Furuta S, Suda I. Sweet potato [beta]-amylase immobilized on chitosan beadsand its application in the semi-continuous production of maltose. Carbohydr Polym, 2001, 44: 189–195

doi: 10.1016/S0144-8617(00)00226-5
Buchner J, Pastan I, Brinkmann U. A method for increasing the yield of properly foldedrecombinant fusion proteins: single-chain immunotoxins from renaturationof bacterial inclusion bodies. Anal Biochem, 1992, 205: 263–270

doi: 10.1016/0003-2697(92)90433-8
Chen C, Ridzon D A, Broomer A J, Zhou Z, Lee D H, Nguyen J T, Barbisin M, Xu N L, Mahuvakar V R, Andersen M R, Lao K Q, Livak K J, Guegler K J. Real-time quantificationof microRNAs by stem-loop RT-PCR. NuclAcids Res, 2005, 33: e179

doi: 10.1093/nar/gni178
Gibson U E, Heid C A, Williams P M. A novel method for real time quantitative RT-PCR. Genome Res, 1996, 6: 995–1001

doi: 10.1101/gr.6.10.995
Siebert P D, Chenchik A, Kellogg D E, Lukyanov K A, Lukyanov S A. An improved PCR method forwalking in uncloned genomic DNA. Nucl AcidsRes, 1995, 23: 1087–1088

doi: 10.1093/nar/23.6.1087
Gerrard A J, Hudson D L, Brownlee G G, Watt F M. Towardsgene therapy for haemophilia B using primary human keratinocytes. Nat Genet, 1993, 3: 180–183

doi: 10.1038/ng0293-180
Pipe S W. Coagulation factors with improved properties for hemophilia genetherapy. Semin Thromb Hemost, 2004, 30: 227–237

doi: 10.1055/s-2004-825636
Suh J S, Lee J Y, Choi Y S, Yu F, Yang V, Lee S J, Chung C P, Park Y J. Efficient labeling of mesenchymal stem cells using cellpermeable magnetic nanoparticles. BiochemBiophys Res Commun, 2009, 379: 669–675

doi: 10.1016/j.bbrc.2008.12.041
Allen T M, Cullis P R. Drug delivery systems: enteringthe mainstream. Science, 2004, 303: 1818–1822

doi: 10.1126/science.1095833
Creque H M, Langer R, Folkman J. One month of sustained release of insulin from a polymerimplant. Diabetes, 1980, 29: 37–40

doi: 10.2337/diabetes.29.1.37
Drummond D C, Meyer O, Hong K, Kirpotin D B, Papahadjopoulos D. Optimizing liposomes fordelivery of chemotherapeutic agents to solid tumors. Pharmacol Rev, 1999, 51: 691–744
Harrington K J, Lewanski C R, Stewart J S W. Liposomes as vehicles for targeted therapy of cancer.Part 1: Preclinical development. Clin Oncol, 2000, 12: 2–15
Lukyanov A N, Elbayoumi T A, Chakilam A R, Torchilin V P. Tumor-targeted liposomes: doxorubicin-loaded long-circulating liposomesmodified with anti-cancer antibody. J ControlledRelease, 2004, 100: 135–144

doi: 10.1016/j.jconrel.2004.08.007
Templeton N S, Lasic D D, Frederik P M, Strey H H, Roberts D D, Pavlakis G N. Improved DNA: liposome complexes for increased systemicdelivery and gene expression. Nat Biotech, 1997, 15: 647–652

doi: 10.1038/nbt0797-647
Barichello J M, Morishita M, Takayama K, Nagai T. Encapsulationof hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitationmethod. Drug Dev Ind Pharm, 1999, 25: 471–476

doi: 10.1081/DDC-100102197
Deamer D W, Barchfeld G L. Encapsulation of macromoleculesby lipid vesicles under simulated prebiotic conditions. J Mol Evol, 1982, 18: 203–206

doi: 10.1007/BF01733047
Grenha A, Seijo B, Remuñán-López C. Microencapsulated chitosannanoparticles for lung protein delivery. Eur J Pharm Sci, 25: 427–437

doi: 10.1016/j.ejps.2005.04.009
Radtchenko I L, Sukhorukov G B, Möhwald H. Incorporation of macromolecules into polyelectrolytemicro- and nanocapsules via surface controlled precipitation on colloidalparticles. Colloids SurfA, 2002, 202: 127–133

doi: 10.1016/S0927-7757(01)01104-9
Hariharan S, Bhardwaj V, Bala I, Sitterberg J, Bakowsky U, Ravi Kumar M. Design of estradiol loaded PLGA nanoparticulate formulations:a potential oral delivery system for hormone therapy. Pharm Res, 2006, 23: 184–195

doi: 10.1007/s11095-005-8418-y
Carino G P, Jacob J S, Mathiowitz E. Nanosphere based oral insulin delivery. J Controlled Release, 2000, 65: 261–269

doi: 10.1016/S0168-3659(99)00247-3
Lowman A M, Morishita M, Kajita M, Nagai T, Peppas N A. Oral delivery of insulin using pH-responsivecomplexation gels. J Pharm Sci, 1999, 88: 933–937

doi: 10.1021/js980337n
Liu X, Pettway G J, McCauley L K, Ma P X. Pulsatilerelease of parathyroid hormone from an implantable delivery system. Biomaterials, 2007, 28: 4124–4131

doi: 10.1016/j.biomaterials.2007.05.034
Song H, Liang J F, Yang V C. A prodrug approach for delivery of t-PA: constructionof the cationic t-PA prodrug by a recombinant method and preliminaryin vitro evaluation of the construct. ASAIOJ, 2000, 46: 663–668

doi: 10.1097/00002480-200011000-00005
Duncan R. Polymerconjugates for tumour targeting and intracytoplasmic delivery. TheEPR effect as a common gateway? PharmaceutSci Tech Today, 1999, 2: 441–449

doi: 10.1016/S1461-5347(99)00211-4
Maeda H. Theenhanced permeability and retention (EPR) effect in tumor vasculature:the key role of tumor-selective macromolecular drug targeting. Advances in Enzyme Regulation, 2001, 41: 189–207

doi: 10.1016/S0065-2571(00)00013-3
Maeda H, Sawa T, Konno T. Mechanism of tumor-targeted delivery of macromoleculardrugs, including the EPR effect in solid tumor and clinical overviewof the prototype polymeric drug SMANCS. Journal of Controlled Release, 2001, 74: 47–61

doi: 10.1016/S0168-3659(01)00309-1
Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeabilityand the EPR effect in macromolecular therapeutics: a review. Journal of Controlled Release, 2000, 65: 271–284

doi: 10.1016/S0168-3659(99)00248-5
Wu J, Akaike T, Hayashida K, Okamoto T, Okuyama A, Maeda H. Enhanced vascular permeability in solid tumor involvingperoxynitrite and matrix metalloproteinases. Cancer Science, 2001, 92: 439–451

doi: 10.1111/j.1349-7006.2001.tb01114.x
Ahmad I, Longenecker M, Samuel J, Allen T M. Antibody-targeteddelivery of doxorubicin entrapped in sterically stabilized liposomescan eradicate lung cancer in mice. CancerRes, 1993, 53: 1484–1488
Baselga J, Norton L, Albanell J, Kim Y M, Mendelsohn J. Recombinant humanized anti-HER2antibody (herceptinTM) enhances the antitumor activity of paclitaxeland doxorubicin against HER2/neu overexpressing human breast cancerxenografts. Cancer Res, 1998, 58: 2825–2831
Tardi P, Boman N, Cullis P. Liposomal doxorubicin. Journalof Drug Targeting, 1996, 4: 129–140

doi: 10.3109/10611869609015970
Yang H M, Reisfeld R A. Doxorubicin conjugated witha monoclonal antibody directed to a human melanoma-associated proteoglycansuppresses the growth of established tumor xenografts in nude mice. Proc Natl Acad Sci USA, 1988, 85: 1189–1193

doi: 10.1073/pnas.85.4.1189
Davis T A, Grillo-Lopez A J, White C A, McLaughlin P, Czuczman M S, Link B K, Maloney D G, Weaver R L, Rosenberg J, Levy R. Rituximab anti-CD20monoclonal antibody therapy in non-hodgkin's lymphoma: safety andefficacy of re-treatment. J Clin Oncol, 2000, 18: 3135–3143
Davis T A, White C A, Grillo-Lopez A J, Velasquez W S, Link B, Maloney D G, Dillman R O, Williams M E, Mohrbacher A, Weaver R, Dowden S, Levy R. Single-agentmonoclonal antibody efficacy in bulky non-hodgkin's lymphoma: resultsof a phase II trial of rituximab. J ClinOncol, 1999, 17: 1851–1857
Jazirehi A R, Bonavida B. Cellular and molecular signaltransduction pathways modulated by rituximab (rituxan, anti-CD20 mAb)in non-Hodgkin's lymphoma: implications in chemosensitization andtherapeutic intervention. Oncogene, 2005, 24: 2121–2143

doi: 10.1038/sj.onc.1208349
Maloney D G, Grillo-Lopez A J, White C A, Bodkin D, Schilder R J, Neidhart J A, Janakiraman N, Foon K A, Liles T M, Dallaire B K, Wey K, Royston I, Davis T, Levy R. IDEC-C2B8 (rituximab) anti-CD20 monoclonalantibody therapy in patients with relapsed low-grade non-Hodgkin'slymphoma. Blood, 1997, 90: 2188–2195
Witzig T E, Flinn I W, Gordon L I, Emmanouilides C, Czuczman M S, Saleh M N, Cripe L, Wiseman G, Olejnik T, Multani P S, White C A. Treatment with ibritumomab tiuxetan radioimmunotherapyin patients with rituximab-refractory follicular non-Hodgkin's lymphoma. J Clin Oncol, 2002, 20: 3262–3269

doi: 10.1200/JCO.2002.11.017
Gao X, Tao W, Lu W, Zhang Q, Zhang Y, Jiang X, Fu S. Lectin-conjugated PEG-PLAnanoparticles: preparation and brain delivery after intranasal administration. Biomaterials, 2006, 27: 3482–3490

doi: 10.1016/j.biomaterials.2006.01.038
Lassalle V, Ferreira M L. PLA nano- and microparticlesfor drug delivery: an overview of the methods of preparation. Macromolecular Bioscience, 2007, 7: 767–783

doi: 10.1002/mabi.200700022
Munier S, Messai I, Delair T, Verrier B, Ataman-Önal Y. Cationic PLAnanoparticles for DNA delivery: comparison of three surface polycationsfor DNA binding, protection and transfection properties. Colloids and Surfaces B: Biointerfaces, 2005, 43: 163–173

doi: 10.1016/j.colsurfb.2005.05.001
Elvassore N, Bertucco A, Caliceti P. Production of insulin-loaded poly(ethylene glycol)/poly(1-lactide)(PEG/PLA) nanoparticles by gas antisolvent techniques. J Pharm Sci, 2001, 90: 1628–1636

doi: 10.1002/jps.1113
Janes K A, Calvo P, Alonso M J. Polysaccharide colloidal particles as delivery systemsfor macromolecules. Adv Drug Delivery Rev, 2001, 47: 83–97

doi: 10.1016/S0169-409X(00)00123-X
Chertok B, David A E, Moffat B A, Yang V C. Substantiatingin vivo magnetic brain tumor targeting of cationic iron oxide nanocarriersvia adsorptive surface masking. Biomaterials, 2009, 30: 6780–6787

doi: 10.1016/j.biomaterials.2009.08.040
Huang M, Qiao Z, Miao F, Jia N, Shen H. Biofunctional magnetic nanoparticlesas contrast agents for magnetic resonance imaging of pancreas cancer. Microchimica Acta, 2009, 167: 27–34

doi: 10.1007/s00604-009-0210-y
Zhao M, Kircher M F, Josephson L, Weissleder R. Differential conjugation of tat peptide to superparamagnetic nanoparticlesand its effect on cellular uptake. BioconjugateChemistry, 2002, 13: 840–844

doi: 10.1021/bc0255236
Needham D, Dewhirst M W. The development and testingof a new temperature-sensitive drug delivery system for the treatmentof solid tumors. Adv Drug Delivery Rev, 2001, 53: 285–305

doi: 10.1016/S0169-409X(01)00233-2
Qiu Y, Park K. Environment-sensitive hydrogelsfor drug delivery. Adv Drug Delivery Rev, 2001, 53: 321–339

doi: 10.1016/S0169-409X(01)00203-4
Morçöl T, Nagappan P, Nerenbaum L, Mitchell A, Bell S J D. Calcium phosphate-PEG-insulin-casein(CAPIC) particles as oral delivery systems for insulin. International Journal of Pharmaceutics, 2004, 277: 91–97

doi: 10.1016/j.ijpharm.2003.07.015
Agnihotri S A, Mallikarjuna N N, Aminabhavi T M. Recent advances on chitosan-based micro- and nanoparticlesin drug delivery. Journal of ControlledRelease, 2004, 100: 5–28

doi: 10.1016/j.jconrel.2004.08.010
Ceh B, Winterhalter M, Frederik P M, Vallner J J, Lasic D D. Stealth® liposomes: fromtheory to product. Adv Drug Delivery Rev, 1997, 24: 165–177

doi: 10.1016/S0169-409X(96)00456-5
Moghimi S M, Szebeni J. Stealth liposomes and longcirculating nanoparticles: critical issues in pharmacokinetics, opsonizationand protein-binding properties. Progressin Lipid Research, 2003, 42: 463–478

doi: 10.1016/S0163-7827(03)00033-X
Gupta B, Levchenko T S, Torchilin V P. Intracellular delivery of large molecules and small particlesby cell-penetrating proteins and peptides. Adv Drug Delivery Rev, 2005, 57: 637–651

doi: 10.1016/j.addr.2004.10.007
Patel L, Zaro J, Shen W C. Cell penetrating peptides: intracellular pathways andpharmaceutical perspectives. PharmaceuticalResearch, 2007, 24: 1977–1992

doi: 10.1007/s11095-007-9303-7
Snyder E, Dowdy S. Cell penetrating peptidesin drug delivery. Pharmaceutical Research, 2004, 21: 389–393

doi: 10.1023/B:PHAM.0000019289.61978.f5
Tréhin R, Merkle H P. Chances and pitfalls of cellpenetrating peptides for cellular drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2004, 58: 209–223

doi: 10.1016/j.ejpb.2004.02.018
Fawell S, Seery J, Daikh Y, Moore C, Chen L L, Pepinsky B, Barsoum J. Tat-mediated delivery ofheterologous proteins into cells. ProcNatl Acad Sci U.S.A, 1994, 91: 664–668

doi: 10.1073/pnas.91.2.664
Frankel A D, Pabo C O. Cellular uptake of the tatprotein from human immunodeficiency virus. Cell, 1988, 55: 1189–1193

doi: 10.1016/0092-8674(88)90263-2
Green M, Loewenstein P M. Autonomous functional domainsof chemically synthesized human immunodeficiency virus tat trans-activatorprotein. Cell, 1988, 55: 1179–1188

doi: 10.1016/0092-8674(88)90262-0
Derossi D, Joliot A H, Chassaing G, Prochiantz A. The third helix of the Antennapedia homeodomain translocates throughbiological membranes. Journal of BiologicalChemistry, 1994, 269: 10444–10450
Phelan A, Elliott G, O'Hare P. Intercellular delivery of functional p53 by the herpesvirusprotein VP22. Nat Biotech, 1998, 16: 440–443

doi: 10.1038/nbt0598-440
Byun Y, Chang L C, Lee L M, Han I S, Singh V K,Yang V C. Low molecular weight protamine: a potent but nontoxic antagonistto heparin/low molecular weight protamine. ASAIO Journal, 2000, 46: 435–439

doi: 10.1097/00002480-200007000-00013
Byun Y, Singh V K, Yang V C. Low molecular weight protamine: a potential nontoxicheparin antagonist. Thrombosis Research, 1999, 94: 53–61

doi: 10.1016/S0049-3848(98)00201-1
Chang L C, Lee H F, Yang Z, Yang V. Low molecularweight protamine (LMWP) as nontoxic heparin/low molecular weight heparinantidote (I): Preparation and characterization. The AAPS Journal, 2001, 3: 7–14
Chang L C, Liang J, Lee H F, Lee L, Yang V. Low molecular weight protamine (LMWP)as nontoxic heparin/low molecular weight heparin antidote (II): Invitro evaluation of efficacy and toxicity. The AAPS Journal, 2001, 3: 15–23
Chang L C, Wrobleski S, Wakefield T, Lee L, Yang V. Low molecular weight protamine as nontoxicheparin/low molecular weight heparin antidote (III): Preliminary invivo evaluation of efficacy and toxicity using a canine model. The AAPS Journal, 2001, 3: 24–31
Liang J F, Zhen L, Chang L C, Yang V C. A less toxicheparin antagonist—low molecular weight protamine. Biochemistry (Moscow), 2003, 68: 116–120

doi: 10.1023/A:1022109905487
Park Y J, Chang L C, Liang J F, Moon C, Chung C P, Yang V C. Nontoxic membrane translocation peptide from protamine, low molecularweight protamine (LMWP), for enhanced intracellular protein delivery:in vitro and in vivo study. FASEB J, 2005, 19: 1555–1557
Park Y J, Liang J F, Ko K S, Kim S W, Yang V C. Low molecular weight protamine as anefficient and nontoxic gene carrier: in vitro study. The Journal of Gene Medicine, 2003, 5: 700–711

doi: 10.1002/jgm.402
Schwarze S R, Ho A, Vocero-Akbani A, Dowdy S F. In vivo protein transduction: delivery of a biologically active proteininto the mouse. Science, 1999, 285: 1569–1572

doi: 10.1126/science.285.5433.1569
Kwon Y M, Li Y, Naik S, Liang J F, Huang Y, Park Y J, Yang V C. The ATTEMPTS delivery systemsfor macromolecular drugs. Expert Opinionon Drug Delivery, 2008, 5: 1255–1266

doi: 10.1517/17425240802498059
Li Y T, Kwon Y M, Spangrude G J, Liang J F, Chung H S, Park Y J, Yang V C. Preliminary in vivo evaluationof the protein transduction domain-modified ATTEMPTS approach in enhancingasparaginase therapy. Journal of BiomedicalMaterials Research Part A, 2009, 91A: 209–220

doi: 10.1002/jbm.a.32204
Liang J F, Li Y T, Song H, Park Y J, Naik S S, Yang V C. ATTEMPTS: a heparin/protamine-based delivery system for enzyme drugs. Journal of Controlled Release, 2002, 78: 67–79

doi: 10.1016/S0168-3659(01)00484-9
Park Y J, Liang J F, Song H, Li Y T, Naik S, Yang V C. ATTEMPTS: a heparin/protamine-based triggered release system forthe delivery of enzyme drugs without associated side-effects. Adv Drug Delivery Rev, 2003, 55: 251–265

doi: 10.1016/S0169-409X(02)00181-3
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed