Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Eng Chin    2010, Vol. 4 Issue (4) : 411-416    https://doi.org/10.1007/s11705-010-0514-9
RESEARCH ARTICLE
Numerical study on laminar flame speed of natural gas-carbon monoxide-air mixtures
Chen DONG, Qulan ZHOU(), Qinxin ZHAO, Tongmo XU, Shi’en HUI
State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
 Download: PDF(487 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Laminar flame speeds of natural gas-carbon monoxide-air mixtures are calculated by CHEMKIN II with GRI Mech-3.0 over a large range of fuel compositions, equivalence ratios, and initial temperatures. The calculated results of natural gas are compared with previous experimental results that show a good agreement. The calculated laminar flame speeds of natural gas-carbon monoxide-air mixtures show a nonmonotonic increasing trend with volumetric fraction of carbon monoxide and an increasing trend with the increase of initial temperature of mixtures. The maximum laminar flame speed of certain fuel blend reaches its biggest value when there is 92% volumetric fraction of carbon monoxide in fuel at different initial temperatures. Five stoichiometric natural gas-carbon monoxide-air mixtures are selected to study the detailed chemical structure of natural gas-carbon monoxide-air mixtures. The results show that at stoichiometric condition, the fuel blend with 80% volumetric fraction of carbon monoxide has the biggest laminar flame speed, and the C normalized total production rate of methane with 80% volumetric fraction of carbon monoxide is the largest of the five stoichiometric mixtures.

Keywords laminar flame speed      numerical study      nonmonotonic increasing trend     
Corresponding Author(s): ZHOU Qulan,Email:qlzhou@mail.xjtu.edu.cn   
Issue Date: 05 December 2010
 Cite this article:   
Chen DONG,Qulan ZHOU,Qinxin ZHAO, et al. Numerical study on laminar flame speed of natural gas-carbon monoxide-air mixtures[J]. Front Chem Eng Chin, 2010, 4(4): 411-416.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-010-0514-9
https://academic.hep.com.cn/fcse/EN/Y2010/V4/I4/411
Fig.1  Calculated laminar flame speeds of natural gas
Fig.2  Laminar flame speeds of NG-CO-air mixtures at different equivalence ratios and initial temperatures
Fig.3  The maximum laminar flame speeds of certain NG-CO composition versus volumetric fraction of CO
Fig.4  Computed adiabatic flame temperature versus equivalence ratio for NG-CO fuel blends
flame No.CO volumetric fractionCOCH4C2H6C3H8CO2O2N2calculated laminar flame speed /(cm·s-1)
10.980.2790.005454.6E - 055.6E - 060.00020.15030.565534.14
20.800.1680.040270.000344.3E - 050.00130.16590.624253.93
30.500.0730.070140.000597.5E - 050.00220.17930.674646.05
40.200.0220.086120.000739.2E - 050.00270.18640.701539.57
5000.09320.000799.9E - 050.00290.18960.713436.63
Tab.1  Components and laminar flame speeds of five stoichiometric flames
Fig.5  Mole fraction and total production rate of CH with different volumetric fraction of CO
Fig.6  Mole fraction and total production rate of CO with different volumetric fraction of CO
1 Sun S, Jin H G, Gao L, Han W. Study on a multifunctional energy system producing coking heat, methanol and electricity. Fuel , 2010, 89(7): 1353-1360
doi: 10.1016/j.fuel.2009.05.012
2 Scholte T G, Vaags P B. Burning velocities of mixtures of hydrogen, carbon monoxide and methane with air. Combustion and Flame , 1959, 3: 511-524
doi: 10.1016/0010-2180(59)90057-4
3 Vagelopoulos C M, Egolfopoulos F N. Laminar flame speeds and extinction strain rates of mixtures of carbon monoxide with hydrogen, methane, and air. Proceedings of the Combustion Institute , 1994, 25: 1317-1323
4 Wu C Y, Chao Y C, Cheng T S, Chen C P, Ho C T. Effects of CO addition on the characteristics of laminar premixed CH4/air opposed jet flames. Combustion and Flame , 2009, 156(2): 362-373
doi: 10.1016/j.combustflame.2008.10.028
5 Natarajan J, Lieuwen T J, Seitzman J. Seitzman. Laminar flame speeds of H2/CO mixtures: effect of CO2 dilution, preheat temperature, and pressure. Combustion and Flame , 2007, 151(1-2): 104-119
doi: 10.1016/j.combustflame.2007.05.003
6 Ouimette P, Seers P. Numerical comparison of premixed laminar flame velocity of methane and wood syngas. Fuel , 2009, 88(3): 528-533
doi: 10.1016/j.fuel.2008.10.008
7 Dong C, Zhou Q, Zhao Q, Zhang Y Q, Xu T M, Hui S E. Experimental study on laminar flame speed of hydrogen/carbon monoxide/air mixtures. Fuel , 2009, 88(10): 1858-1863
doi: 10.1016/j.fuel.2009.04.024
8 Wang J H, Huang Z H, Tang C L, Miao H Y, Wang X B. Numerical study of the effect of hydrogen addition on methane-air mixtures combustion. International Journal of Hydrogen Energy , 2009, 34(2): 1084-1096
doi: 10.1016/j.ijhydene.2008.11.010
9 Huang Z H, Zhang Y, Zeng K, Liu B, Wang Q, Jiang D M. Measurements of laminar burning velocities for natural gas-hydrogen-air mixtures. Combustion and Flame , 2006, 146(1-2): 302-311
doi: 10.1016/j.combustflame.2006.03.003
[1] Chen DONG, Qulan ZHOU, Xiaoguang ZHANG, Qinxin ZHAO, Tongmo XU, Shi’en HUI. Experimental study on the laminar flame speed of hydrogen/natural gas/air mixtures[J]. Front Chem Eng Chin, 2010, 4(4): 417-422.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed