Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2011, Vol. 5 Issue (1) : 79-88    https://doi.org/10.1007/s11705-010-0550-5
RESEARCH ARTICLE
Effect of SiO2/Al2O3 ratio on the conversion of methanol to olefins over molecular sieve catalysts
Qian WANG1, Lei WANG2, Hui WANG1, Zengxi LI1(), Xiangping ZHANG2, Suojiang ZHANG2(), Kebin ZHOU1
1. Graduate University of Chinese Academy of Sciences, Beijing 100049, China; 2. State Key Laboratory of Multiphase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
 Download: PDF(443 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A series of SAPO-34 molecular sieves with different SiO2/Al2O3 ratios have been synthesized for the methanol-to-olefin (MTO) reaction. Their physico-chemical properties are characterized by various techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR) and N2 adsorption-desorption. The results are compared with those of the commercial HZSM-5, which show that the crystallinity and particle diameter of SAPO-34 as well as HZSM-5 increase with SiO2/Al2O3 ratio. The variation of BET surface area of SAPO-34 is different from that of HZSM-5 and the sample with SiO2/Al2O3 ratio of 0.4 exhibits the highest BET surface area. FT-IR spectra indicate that HZSM-5 has both Br?nsted and Lewis acid sites and Br?nsted acid sites are stronger, whereas SAPO-34 samples are dominated only by Lewis acid sites. When the SiO2/Al2O3 ratio increases, propylene and butylenes become the predominant product of the MTO reaction over HZSM-5. In contrast, the main products of this reaction catalyzed by SAPO-34 are ethylene and propylene. According to the product distribution, the reaction mechanism over HZSM-5 catalysts is proposed.

Keywords HZSM-5      SAPO-34      methanol-to-olefin (MTO)      SiO2/Al2O3 ratio     
Corresponding Author(s): LI Zengxi,Email:zxli@home.ipe.ac.cn; ZHANG Suojiang,Email:sjzhang@home.ipe.ac.cn   
Issue Date: 05 March 2011
 Cite this article:   
Qian WANG,Lei WANG,Hui WANG, et al. Effect of SiO2/Al2O3 ratio on the conversion of methanol to olefins over molecular sieve catalysts[J]. Front Chem Sci Eng, 2011, 5(1): 79-88.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-010-0550-5
https://academic.hep.com.cn/fcse/EN/Y2011/V5/I1/79
Fig.1  XRD patterns of HZSM-5 with different SiO/AlO ratio. (a) 25; (b) 50; (c) 100; (d) 300
Fig.2  XRD patterns of SAPO-34 synthesized with different SiO/AlO ratio. (a) 0.1; (b) 0.4; (c) 0.7; (d) 1.0
SiO2/Al2O3 ratio in initial gelSiO2/Al2O3 ratio in product a)BET surface area /(m2·g-1)crystallinity /%crystal size /μm
259.246-65~1
5013.99324275~2
10061.00024690~3
30097.167296100~5
Tab.1  Physicochemical properties of the HZSM-5 samples
SiO2/Al2O3 ratio in initial gelproduct composition a)crystallinity /%crystal size /μm
AlSiPSiO2/Al2O3
0.10.5870.0370.3760.03262~2
0.40.5840.0870.3290.07470~4
0.70.5910.0810.3270.06994~5
1.00.6180.0700.3120.057100~7
Tab.2  Physicochemical properties of the SAPO-34 samples
Fig.3  SEM photographs of HZSM-5 with different SiO/AlO ratio
(a) 25; (b) 50; (c) 100; (d) 300
Fig.4  SEM photographs of SAPO-34 synthesized with different SiO/AlO ratio
(a) 0.1; (b) 0.4; (c) 0.7; (d) 1.0
SiO2/Al2O3 ratiosBET surface area /(m2·g-1)pore volume /(cm3·g-1)pore diameter /nm (BJH method)
0.13390.404.7
0.43530.384.2
0.73210.354.4
1.02800.334.7
Tab.3  BET surface area, pore volume and pore diameter of the SAPO-34 samples
Fig.5  N adsorption-desorption isotherms of SAPO-34 samples synthesized with different SiO/AlO ratio. (a) 0.1; (b) 0.4; (c) 0.7; (d) 1.0
Fig.6  Distribution of mesopore using BJH method from the desorption branch of isotherm in SAPO-34 samples synthesized with different SiO/AlO ratio. (a) 0.1; (b) 0.4; (c) 0.7; (d) 1.0
Fig.7  FT-IR spectra of pyridine adsorbed and desorbed on HZSM-5 with SiO/AlO ratio of 300 (A) and SAPO-34 (B) with SiO/AlO ratio of 0.4. (a) before adsorption; (b) 20°C; (c) 100°C; (d) 200°C; (e) 300°C
Fig.8  FT-IR spectra of pyridine adsorbed at room temperature and evacuated at 200°C on the SAPO-34 samples synthesized with different SiO/AlO ratio. (a) 0.1; (b) 0.4; (c) 0.7; (d) 1.0
Fig.9  Effects of SiO/AlO ratio on methanol conversion and olefin selectivity over HZSM-5 (a) and SAPO-34 catalysts (b)
Fig.10  Effects of reaction temperature on methanol conversion and light olefin selectivity over HZSM-5 (a) and SAPO-34 catalysts (b)
Fig.11  Scheme of the reaction mechanism
1 Park J W, Seo G. IR study on methanol-to-olefin reaction over zeolites with different pore structures and acidities. Applied Catalysis A, General , 2009, 356(2): 180–188
doi: 10.1016/j.apcata.2009.01.001
2 Mei C, Wen P, Liu Z, Liu H, Wang Y, Yang W, Xie Z, Hua W, Gao Z. Selective production of propylene from methanol: mesoporosity development in high silica HZSM-5. Journal of Catalysis , 2008, 258(1): 243–249
doi: 10.1016/j.jcat.2008.06.019
3 Liu J, Zhang C, Shen Z, Hua W, Tang Y, Shen W, Yue Y, Xu H. Methanol to propylene: effect of phosphorus on a high silica HZSM-5 catalyst. Catalysis Communications , 2009, 10(11): 1506–1509
doi: 10.1016/j.catcom.2009.04.004
4 Kaarsholm M, Joensen F, Nerlov J, Cenni R, Chaouki J, Patience G S. Phosphorous modified ZSM-5: deactivation and product distribution for MTO. Chemical Engineering Science , 2007, 62(18-20): 5527–5532
doi: 10.1016/j.ces.2006.12.076
5 Zhu Q, Kondo J N, Ohnuma R, Kubota Y, Yamaguchi M, Tatsumi T. The study of methanol-to-olefin over proton type aluminosilicate CHA zeolites. Microporous and Mesoporous Materials , 2008, 112(1-3): 153–161
doi: 10.1016/j.micromeso.2007.09.026
6 Shirazi L, Jamshidi E, Ghasemi M. The effect of Si/Al ratio of ZSM-5 zeolite on its morphology, acidity and crystal size. Crystal Research and Technology , 2008, 43(12): 1300–1306
doi: 10.1002/crat.200800149
7 Sang S, Chang F, Liu Z, He C, He Y, Xu L. Difference of ZSM-5 zeolites synthesized with various templates. Catalysis Today , 2004, 93: 729–734
doi: 10.1016/j.cattod.2004.06.091
8 Falamaki C, Edrissi M, Sohrabi M. Studies on the crystallization kinetics of zeolite ZSM-5 with 1, 6-hexanediol as a structure-directing agent. Zeolites , 1997, 19(1): 2–5
doi: 10.1016/S0144-2449(97)00025-0
9 Wilson S, Barger P. The characteristics of SAPO-34 which influence the conversion of methanol to light olefins. Microporous and Mesoporous Materials , 1999, 29(1-2): 117–126
doi: 10.1016/S1387-1811(98)00325-4
10 Liang J, Li H, Zhao S, Guo W, Wang R, Ying M. Characteristics and performance of SAPO-34 catalyst for methanol-to-olefin conversion. Applied Catalysis , 1990, 64: 31–40
doi: 10.1016/S0166-9834(00)81551-1
11 Inui T. High potential of novel zeolitic materials as catalysts for solving energy and environmental problems. Studies in Surface Science and Catalysis , 1997, 105: 1441–1468
doi: 10.1016/S0167-2991(97)80787-2
12 Xu Y, Grey C P, Thomas J M, Cheetham A K. An investigation into the conversion of methanol to hydrocarbons over a SAPO-34 catalyst using magic-angle-spinning NMR and gas chromatography. Catalysis Letters , 1990, 4(3): 251–260
doi: 10.1007/BF00765942
13 Wei Y, Zhang D, He Y, Xu L, Yang Y, Su B, Liu Z. Catalytic performance of chloromethane transformation for light olefins production over SAPO-34 with different Si content. Catalysis Letters , 2007, 114(1-2): 30–35
doi: 10.1007/s10562-007-9038-4
14 Chen J Q, Bozzano A, Glover B, Fuglerud T, Kvisle S. Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process. Catalysis Today , 2005, 106(1-4): 103–107
doi: 10.1016/j.cattod.2005.07.178
15 Liu G, Tian P, Zhang Y, Li J, Xu L, Meng S, Liu Z. Synthesis of SAPO-34 templated by diethylamine: crystallization process and Si distribution in the crystals. Microporous and Mesoporous Materials , 2008, 114(1-3): 416–423
doi: 10.1016/j.micromeso.2008.01.030
16 Lok B M, Messina C A, Patton R L, Gajek R T, Cannan T R, Flanigen E M. Silicoaluminophosphate molecular sieves: another new class of microporous crystalline inorganic solids. Journal of the American Chemical Society , 1984, 106(20): 6092–6093
doi: 10.1021/ja00332a063
17 Bj?rgen M, Joensen F, Spangsberg Holm M, Olsbye U, Lillerud K P, Svelle S. Methanol to gasoline over zeolite H-ZSM-5: improved catalyst performance by treatment with NaOH. Applied Catalysis A, General , 2008, 345(1): 43–50
doi: 10.1016/j.apcata.2008.04.020
18 Volckmar C E, Bron M, Bentrup U, Martin A, Claus P. Influence of the support composition on the hydrogenation of acrolein over Ag/SiO2-Al2O3 catalysts. Journal of Catalysis , 2009, 261(1): 1–8
doi: 10.1016/j.jcat.2008.10.012
19 Abu-Zied B M, Schwieger W, Unger A. Nitrous oxide decomposition over transition metal exchanged ZSM-5 zeolites prepared by the solid-state ion-exchange method. Applied Catalysis B: Environmental , 2008, 84(1-2): 277–288
doi: 10.1016/j.apcatb.2008.04.004
20 Chang C D, Chu C T W, Socha R F. Methanol conversion to olefins over ZSM-5. I. Effect of temperature and zeolite SiO2/Al2O3. Journal of Catalysis , 1984, 86(2): 289–296
doi: 10.1016/0021-9517(84)90374-9
21 Prinz D, Riekert L. Formation of ethene and propene from methanol on zeolite ZSM-5. I. Investigation of rate and selectivity in a batch reactor. Applied Catalysis , 1988, 37: 139–154
doi: 10.1016/S0166-9834(00)80757-5
22 Firoozi M, Baghalha M, Asadi M. The effect of micro and nano particle sizes of H-ZSM-5 on the selectivity of MTP reaction. Catalysis Communications , 2009, 10(12): 1582–1585
doi: 10.1016/j.catcom.2009.04.021
23 Stocker M. Methanol-to-hydrocarbons: catalytic materials and their behavior. Microporous and Mesoporous Materials , 1999, 29(1-2): 3–48
doi: 10.1016/S1387-1811(98)00319-9
[1] Ignacio Jorge Castellanos-Beltran, Gnouyaro Palla Assima, Jean-Michel Lavoie. Effect of temperature in the conversion of methanol to olefins (MTO) using an extruded SAPO-34 catalyst[J]. Front. Chem. Sci. Eng., 2018, 12(2): 226-238.
[2] Mehdi SEDIGHI,Kamyar KEYVANLOO. Kinetic study of the methanol to olefin process on a SAPO-34 catalyst[J]. Front. Chem. Sci. Eng., 2014, 8(3): 306-311.
[3] Alireza MOHAMMADREZAEI, Sadegh PAPARI, Mousa ASADI, Abas NADERIFAR, Reza GOLHOSSEINI. Methanol to propylene: the effect of iridium and iron incorporation on the HZSM-5 catalyst[J]. Front Chem Sci Eng, 2012, 6(3): 253-258.
[4] ZHU Xinli, YU Kailu, CHENG Dangguo, XIA Qing, LIU Changjun, ZHANG Yueping. Modification of acidity of Mo-Fe/HZSM-5 zeolite via argon plasma treatment[J]. Front. Chem. Sci. Eng., 2008, 2(1): 55-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed