|
|
Carbon dioxide sequestration in petrochemical industries with the aim of reduction in greenhouse gas emissions |
Maryam Takht Ravanchi( ), Saeed Sahebdelfar, Farnaz Tahriri Zangeneh |
Catalyst Research Group, Petrochemical Research and Technology Company, National Petrochemical Company, Tehran 14358-84711, Iran |
|
|
Abstract The mitigation of greenhouse gas emissions to acceptable levels is arguably the greatest environmental challenge these days. Vast utilization of fossil fuels and forest destruction are main causes of CO2 increase in the atmosphere. Carbon dioxide sequestration that consists of separation, transportation and utilization or storage of CO2, is one way for reduction of its emission, in which the most costly section is separation. Different methods can be used for carbon dioxide separation such as absorption, membrane separation, adsorption and cryogenic distillation. Economic, technical and environmental issues should be considered in selection of the technology for particular application. Carbon dioxide concentration, temperature, pressure and flow rate are influential operating parameters in the selection of the appropriate separation method. Nowadays, absorption is the worldwide industrial separation method. New researches are focused on developing new stable solvents and efficient column configuration with suitable internals to minimize pressure drop. Membrane separation and adsorption (PSA type) are other long-term alternatives that can increase separation efficiency and decrease separation cost. The level of energy consumption in various separation methods are in the order: chemical absorption>physical absorption>membrane separation. Because of high investment costs, current separation technologies are suitable for large concentrated sources. In the present paper, different processes for carbon dioxide separation are investigated and compared. Available technologies and commercial plants for CO2 sequestration are provided.
|
Keywords
carbon dioxide
greenhouse effect
separation
membrane
absorption
adsorption
|
Corresponding Author(s):
Takht Ravanchi Maryam,Email:m.ravanchi@npc-rt.ir, ravanchi@yahoo.com
|
Issue Date: 05 June 2011
|
|
1 |
Bhaskararao B K. Carbon capture in petrochemical operations. Petroleum technology quarterly , 2007, 12: 109-111
|
2 |
Stewart C, Hessami M A. A study of methods of carbon dioxide capture and sequestration––the sustainability of a photosynthetic bioreactor approach. Energy Conversion and Management , 2005, 46(3): 403-420 doi: 10.1016/j.enconman.2004.03.009
|
3 |
Omae I. Aspects of carbon dioxide utilization. Catalysis Today , 2006, 115(1-4): 33-52 doi: 10.1016/j.cattod.2006.02.024
|
4 |
Arakawa H, Aresta M, Armor J N, Barteau M A, Beckman E J, Bell A T, Bercaw J E, Creutz C, Dinjus E, Dixon D A, Domen K, DuBois D L, Eckert J, Fujita E, Gibson D H, Goddard W A, Goodman D W, Keller J, Kubas G J, Kung H H, Lyons J E, Manzer L E, Marks T J, Morokuma K, Nicholas K M, Periana R, Que L, Rostrup-Nielson J, Sachtler W M, Schmidt L D, Sen A, Somorjai G A, Stair P C, Stults B R, Tumas W. Catalysis research of relevance to carbon management: progress, challenges, and opportunities. Chemical Reviews , 2001, 101(4): 953-996 doi: 10.1021/cr000018s
|
5 |
Zevenhoven R, Eloneva S, Teir S. Chemical fixation of CO2 in carbonates: routes to valuable products and long-term storage. Catalysis Today , 2006, 115(1-4): 73-79 doi: 10.1016/j.cattod.2006.02.020
|
6 |
Song C. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catalysis Today , 2006, 115(1-4): 2-32 doi: 10.1016/j.cattod.2006.02.029
|
7 |
Metz B, Davidson O, Coninck H, Loos M, Meyer L. Carbon Dioxide Capture and Storage. London: Cambridge University Press, 2005, 107-171
|
8 |
Menon A, Duss M, Bachmann C. Post combustion capture of CO2. Petroleum technology quarterly , 2009, 2: 115-121
|
9 |
Thomas D C. Carbon Dioxide Capture for Storage in Deep Geologic Formations. London: Elsevier, 2005, 91-97
|
10 |
Olajire A A. CO2 capture and separation technologies for end-of-pipe applications–a review. Energy , 2010, 35(6): 2610-2628 doi: 10.1016/j.energy.2010.02.030
|
11 |
Gorji A H, Kaghazchi T. CO2/H2 separation by facilitated transport membranes immobilized with aqueous single and mixed amine solutions: experimental and modeling study. Journal of Membrane Science , 2008, 325(1): 40-49 doi: 10.1016/j.memsci.2008.06.063
|
12 |
Heydari G A, Kaghazchi T, Kargari A. Analytical approximate solution of competitive facilitated transport of acid gases through liquid membranes. Desalination , 2009, 235(1-3): 245-263 doi: 10.1016/j.desal.2008.02.010
|
13 |
Gorji A H, Kaghazchi T. Mathematical modeling of CO2 facilitated transport through liquid membranes containing amines as carrier. Canadian Journal of Chemical Engineering , 2008, 86(6): 1039-1046 doi: 10.1002/cjce.20107
|
14 |
Pennline H W, Luebke D R, Jones K L, Myers C R, Morsi B I, Heintz Y J, Ilconich J B. Progress in carbon dioxide capture and separation research for gasification-based power generation point sources. Fuel Processing Technology , 2008, 89(9): 897-907 doi: 10.1016/j.fuproc.2008.02.002
|
15 |
Yang H, Xu Z, Fan M, Gupta R, Slimane R B, Bland A E, Wright I. Progress in carbon dioxide separation and capture: a review. Journal of Environmental Sciences (China) , 2008, 20(1): 14-27 doi: 10.1016/S1001-0742(08)60002-9
|
16 |
Granite E J, O’Brien T. Review of novel methods for carbon dioxide separation from flue and fuel gases. Fuel Processing Technology , 2005, 86(14-15): 1423-1434 doi: 10.1016/j.fuproc.2005.01.001
|
17 |
Pennline H W, Granite E J, Luebke D R, Kitchin J R, Landon J, Weiland L M. Separation of CO2 from flue gas using electrochemical cells. Fuel , 2010, 89(6): 1307-1314 doi: 10.1016/j.fuel.2009.11.036
|
18 |
Edmonds J A, Wise M A, Dooley J J, Kim S H, Smith S J, Runci P J, Clarke L E, Malone E L, Stokes G M. Global Energy Technology Strategy. United States of America: Battelle Memorial Institute , 2007, 94-105
|
19 |
Kovvali A S, Sirkar K K. Carbon dioxide separation with novel solvents as liquid membranes. Industrial & Engineering Chemistry Research , 2002, 41(9): 2287-2295 doi: 10.1021/ie010757e
|
20 |
Dowell N M, Galindo A, Jackson G, Adjiman C S. Integrated solvent and process design for the reactive separation of CO2 from flue gas. Computer Aided Chemical Engineering , 2010, 28: 1231-1236 doi: 10.1016/S1570-7946(10)28206-8
|
21 |
Yamasaki A. An overview of CO2 mitigation options for global warming—emphasizing CO2 sequestration options. Journal of Chemical Engineering of Japan , 2003, 36(4): 361-375 doi: 10.1252/jcej.36.361
|
22 |
Ahmad A L, Sunarti A R, Lee K T, Fernando W J N. CO2 removal using membrane gas absorption. International Journal of Greenhouse Gas Control , 2010, 4(3): 495-498 doi: 10.1016/j.ijggc.2009.12.003
|
23 |
Nirula S C, Ashraf M.CO2 separation. Process Economic Program (PEP) Report 180, Chapter 4 , 39-92
|
24 |
Tabe-Mohammadi A. A review of the applications of membrane separation technology in natural gas treatment. Separation Science and Technology , 1999, 34(10): 2095-2111 doi: 10.1081/SS-100100758
|
25 |
Anson M, Marchese J, Garis E, Ochoa N, Pagliero C. ABS copolymer-activated carbon mixed matrix membranes for CO2/CH4 separation. Journal of Membrane Science , 2004, 243(1-2): 19-28 doi: 10.1016/j.memsci.2004.05.008
|
26 |
Feron P H P, Jansen A E, Klaassen R. Membrane technology in carbon dioxide removal. Energy Conversion and Management , 1992, 33(5-8): 421-428 doi: 10.1016/0196-8904(92)90039-Y
|
27 |
Okabe K, Mano H, Fujioka Y.Separation and recovery of carbon dioxide by a membrane flash process. Int J of greenhouse gas control , 2008, 2: 485-491
|
28 |
Jansen D, Dijkstra J W, van den Brink R W, Peters T A, Stange M, Bredesen R, Goldbach A, Xu H Y, Gottschalk A, Doukelis A. Hydrogen membrane reactors for CO2 capture. Energy Procedia , 2009, 1(1): 253-260 doi: 10.1016/j.egypro.2009.01.036
|
29 |
Powell C E, Qiao G G. Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. Journal of Membrane Science , 2006, 279(1-2): 1-49 doi: 10.1016/j.memsci.2005.12.062
|
30 |
Ho M T, Allinson G, Wiley D E. Comparison of CO2 separation options for geo-sequestration: are membranes competitive. Desalination , 2006, 192(1-3): 288-295 doi: 10.1016/j.desal.2005.04.135
|
31 |
Ebner A D, Ritter J A. State-of-the-art adsorption and membrane separation processes for carbon dioxide production from carbon dioxide emitting industries. Separation Science and Technology , 2009, 44(6): 1273-1421 doi: 10.1080/01496390902733314
|
32 |
Plaza M G, Pevida C, Martín C F, Fermoso J, Pis J J, Rubiera F. Developing almond shell-derived activated carbons as CO2 adsorbents. Separation and Purification Technology , 2010, 71(1): 102-106 doi: 10.1016/j.seppur.2009.11.008
|
33 |
Chaffee A L, Knowles G P, Liang Z, Zhang J, Xiao P, Webley P A. CO2 capture by adsorption: materials and process development. International Journal of Greenhouse Gas Control , 2007, 1(1): 11-18 doi: 10.1016/S1750-5836(07)00031-X
|
35 |
Zanganeh K E, Shafeen A, Salvador C. CO2 capture and development of an advanced pilot-scale cryogenic separation and compression unit. Energy Procedia , 2009, 1(1): 247-252 doi: 10.1016/j.egypro.2009.01.035
|
36 |
Tuinier M J, van Sint Annaland M, Kramer G J, Kuipers J A M. Cryogenic CO2 capture using dynamically operated packed beds. Chemical Engineering Science , 2010, 65(1): 114-119 doi: 10.1016/j.ces.2009.01.055
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|