Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2011, Vol. 5 Issue (3) : 318-324    https://doi.org/10.1007/s11705-010-1026-3
RESEARCH ARTICLE
Simultaneous saccharification and fermentation of sweet potato powder for the production of ethanol under conditions of very high gravity
Yinxiu CAO, Hongchi TIAN, Kun YAO, Yingjin YUAN()
Key Laboratory of Systems Bioengineering(Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
 Download: PDF(171 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Due to its merits of drought tolerance and high yield, sweet potatoes are widely considered as a potential alterative feedstock for bioethanol production. Very high gravity (VHG) technology is an effective strategy for improving the efficiency of ethanol fermentation from starch materials. However, this technology has rarely been applied to sweet potatoes because of the high viscosity of their liquid mash. To overcome this problem, cellulase was added to reduce the high viscosity, and the optimal dosage and treatment time were 8 U/g (sweet potato powder) and 1 h, respectively. After pretreatment by cellulase, the viscosity of the VHG sweet potato mash (containing 284.2 g/L of carbohydrates) was reduced by 81%. After liquefaction and simultaneous saccharification and fermentation (SSF), the final ethanol concentration reached 15.5% (v/v), and the total sugar conversion and ethanol yields were 96.5% and 87.8%, respectively.

Keywords bioethanol      sweet potato      very high gravity      viscosity reduction      simultaneous saccharification and fermentation     
Corresponding Author(s): YUAN Yingjin,Email:yjyuan@tju.edu.cn, yjyuan@public.tpt.tj.cn   
Issue Date: 05 September 2011
 Cite this article:   
Yinxiu CAO,Hongchi TIAN,Kun YAO, et al. Simultaneous saccharification and fermentation of sweet potato powder for the production of ethanol under conditions of very high gravity[J]. Front Chem Sci Eng, 2011, 5(3): 318-324.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-010-1026-3
https://academic.hep.com.cn/fcse/EN/Y2011/V5/I3/318
EffectMaterial-water ratios /(w·w-1)
1 ∶ 2.91 ∶ 2.61 ∶ 2.31 ∶ 2.01 ∶ 1.7
Ethanol concentration (v/v) /%11.813.414.815.2
Total initial sugars /(g·L-1)224.9251.5284.2312.8
Initial reducing sugars /(g·L-1)115.5127.1142.4151.5170.7
Total residual sugars /(g·L-1)15.613.422.640.1
Residual reducing sugars /(g·L-1)5.05.88.525.1178.1
Ethanol yield /%87.287.087.586.2
Sugar utilization /%93.394.892.387.6-
Fermentation time /h28324552
Tab.1  Effect of the material/water ratio on sweet potato fermentation
Fig.1  Effect of amylase dosage on the liquefaction of sweet potato powder
Glucoamylase /(U·g)50.0100.0150.0200.0250.0300.0500.0
Ethanol concentration (v/v) /%11.413.914.214.814.814.814.8
Total initial sugars /(g·L-1)281.1
Total residual sugars /(g·L-1)78.836.733.325.824.622.422.6
Residual reducing sugars /(g·L-1)38.012.59.67.05.35.26.0
Ethanol yield /%87.187.988.689.689.287.188.8
Sugar utilization /%72.087.088.190.891.292.292.0
Tab.2  Effect of the dosage of glucoamylase on sweet potato fermentation
Material/water ratio (w/w)Residual reducing sugars /(g·L-1)Ethanol (v/v) /%
SHFSSFSHFSSF
1∶268.825.114.315.2
1∶2.319.0714.514.8
Tab.3  Effects of SHF and SSF on sweet potato fermentation
Fig.2  (a) The effects of the dosage and treatment time of cellulase on ethanol production from sweet potato fermentation. (b) The effect of cellulase (8 U/g (sweet potato powder)) on the broth’s viscosity with different treatment times.
1 Lynd L R. Overview and evaluation of fuel ethanol from cellulosic biomass: technology, economics, the environment, and policy. Annual Review of Energy and the Environment , 1996, 21(1): 403-465
doi: 10.1146/annurev.energy.21.1.403
2 Liu S Y, Lin C Y. Development and perspective of promising energy plants for bioethanol production in Taiwan. Renewable Energy , 2009, 34(8): 1902-1907
doi: 10.1016/j.renene.2008.12.018
3 Worley J W, Vaughan D H, Cundiff J S. Energy analysis of ethanol production from sweet sorghum. Bioresource Technology , 1992, 40(3): 263-273
doi: 10.1016/0960-8524(92)90153-O
4 Lu G Q, Huang H H, Zhang D P. Application of near-infrared spectroscopy to predict sweetpotato starch thermal properties and noodle quality. Journal of Zhejiang University. Science. B. , 2006, 7(6): 475-481
doi: 10.1631/jzus.2006.B0475
5 Yang J Q. Chinese Patent, 1727491, 2006-20-01
6 Gong D C, Gong M Z, Li D Y. Chinese Patent, 1966696,2007-05-23
7 Zhang L A, Chen Q A, Jin Y L, Xue H L, Guan J F, Wang Z Y, Zhao H. Energy-saving direct ethanol production from viscosity reduction mash of sweet potato at very high gravity (VHG). Fuel Processing Technology , 2010, 91(12): 1845-1850
doi: 10.1016/j.fuproc.2010.08.009
8 Bayrock D P, Michael I W. Application of multistage continuous fermentation for production of fuel alcohol by very-high-gravity fermentation technology. Journal of Industrial Microbiology & Biotechnology , 2001, 27(2): 87-93
doi: 10.1038/sj.jim.7000167
9 Thomas K C, Hynes S H, Jones A M, Ingledew W M. Production of fuel alcohol from wheat by VHG technology. Applied Biochemistry and Biotechnology , 1993, 43(3): 211-226
doi: 10.1007/BF02916454
10 Thomas K C, Hynes S H, Ingledew W M. Practical and theoretical considerations in the production of high concentrations of alcohol by fermentation. Process Biochemistry , 1996, 31(4): 321-331
doi: 10.1016/0032-9592(95)00073-9
11 Dragone G, Mussatto S I, Silva J B A E. High gravity brewing by continuous process using immobilised yeast: effect of wort original gravity on fermentation performance. JI Brewing, 2007, 113: 391-398
12 Pereira F B, Guimar?es P M R, Teixeira J A, Domingues L. Optimization of low-cost medium for very high gravity ethanol fermentations by Saccharomyces cerevisiae using statistical experimental designs. Bioresource Technology , 2010, 101(20): 7856-7863
doi: 10.1016/j.biortech.2010.04.082
13 Laopaiboon L, Nuanpeng S, Srinophakun P, Klanrit P, Laopaiboon P. Ethanol production from sweet sorghum juice using very high gravity technology: effects of carbon and nitrogen supplementations. Bioresource Technology , 2009, 100(18): 4176-4182
doi: 10.1016/j.biortech.2009.03.046
14 Reddy L V. Improvement of ethanol production in very high gravity (VHG) fermentation by black gram (Vigna mungo) flour supplementation. New Biotechnology , 2009, 25: S229-S230
doi: 10.1016/j.nbt.2009.06.204
15 Dragone G, Mussatto S I, Silva J B A. Use of concentrated worts for high gravity brewing by continuous process: new tendencies for the productivity increase. Ciênc Tecnol Aliment , 2007, 27: 37-40
doi: 10.1590/S0101-20612007000500007
16 Shen Y, Ge X M, Bai F W. Application of oscillation for efficiency improvement of continuous ethanol fermentation with Saccharomyces cerevisiae under very-high-gravity conditions. Applied Microbiology and Biotechnology , 2010, 86(1): 103-108
doi: 10.1007/s00253-009-2283-2
17 Pradeep P, Goud G K, Reddy O V S. Optimization of very high gravity (VHG) finger millet (ragi) medium for ethanolic fermentation by yeast. Chiang Mai J Sci , 2010, 37: 116-123
18 Ingledew W M, Thomas K C, Hynes S H, McLeod J G. Viscosity concerns with rye mashes used for ethanol production. Cereal Chemistry , 1999, 76(3): 459-464
doi: 10.1094/CCHEM.1999.76.3.459
19 Wang D, Bean S, McLaren J, Seib P, Madl R, Tuinstra M, Shi Y, Lenz M, Wu X, Zhao R. Grain sorghum is a viable feedstock for ethanol production. Journal of Industrial Microbiology & Biotechnology , 2008, 35(5): 313-320
doi: 10.1007/s10295-008-0313-1
20 Che L M, Wang L J, Li D, Bhandari B, ?zkan N, Chen X D, Mao Z H. Starch pastes thinning during high-pressure homogenization. Carbohydrate Polymers , 2009, 75(1): 32-38
doi: 10.1016/j.carbpol.2008.06.004
21 Oxenboll S?rensen S, Pauly M, Bush M, Skj?t M, McCann M C, Borkhardt B, Ulvskov P. Pectin engineering: modification of potato pectin by in vivo expression of an endo-1,4-beta-D-galactanase. Proceedings of the National Academy of Sciences of the United States of America , 2000, 97(13): 7639-7644
doi: 10.1073/pnas.130568297
22 Sriroth K, Chollakup R, Chotineeranat S, Piyachomkwan K, Oates C G. Processing of cassava waste for improved biomass utilization. Bioresource Technology , 2000, 71(1): 63-69
doi: 10.1016/S0960-8524(99)00051-6
23 Zhong C, Lau M W, Balan V, Dale B E, Yuan Y J. Optimization of enzymatic hydrolysis and ethanol fermentation from AFEX-treated rice straw. Applied Microbiology and Biotechnology , 2009, 84(4): 667-676
doi: 10.1007/s00253-009-2001-0
24 Nitayavardhana S, Rakshit S K, Grewell D, van Leeuwen J H, Khanal S K. Ultrasound pretreatment of cassava chip slurry to enhance sugar release for subsequent ethanol production. Biotechnology and Bioengineering , 2008, 101(3): 487-496
doi: 10.1002/bit.21922
25 Phisalaphong M, Srirattana N, Tanthapanichakoon W. Mathematical modeling to investigate temperature effect on kinetic parameters of ethanol fermentation. Biochemical Engineering Journal , 2006, 28(1): 36-43
doi: 10.1016/j.bej.2005.08.039
26 Banat I M, Nigam P, Singh D, Marchant R, McHale A P. Ethanol production at elevated temperatures and alcohol concentrations: Part I- Yeasts in general. World Journal of Microbiology and Biotechnology , 1998, 14(6): 809-821
doi: 10.1023/A:1008802704374
27 McMillan J D, Newman M M, Templeton D W, Mohagheghi A. Simultaneous saccharification and cofermentation of dilute-acid pretreated yellow poplar hardwood to ethanol using xylose-fermenting Zymomonas mobilis. Applied Biochemistry and Biotechnology , 1999, 79(1-3): 649-665
doi: 10.1385/ABAB:79:1-3:649
28 Liu C L, Zhao Z H. Study on the fermentation technology of high-efficiency environment-protection and energy-saving alcohol. Liquor Making Sci Technol , 2007, 3: 75-77 (in Chinese)
29 Srichuwong S, Fujiwara M, Wang X H, Seyama T, Shiroma R, Arakane M, Mukojima N, Tokuyasu K. Simultaneous saccharification and fermentation (SSF) of very high gravity (VHG) potato mash for the production of ethanol. Biomass and Bioenergy , 2009, 33(5): 890-898
doi: 10.1016/j.biombioe.2009.01.012
30 Choi G W, Moon S K, Kang H W, Min J, Chung B W. Simultaneous saccharification and fermentation of sludge-containing cassava mash for batch and repeated batch production of bioethanol by Saccharomyces cerevisiae CHFY0321. Journal of Chemical Technology and Biotechnology , 2009, 84(4): 547-553
doi: 10.1002/jctb.2077
31 Choi G W, Kang H W, Kim Y R, Chung B W. Ethanol production by Zymomonas mobilis CHZ2501 from industrial starch feedstocks. Biotechnology and Bioprocess Engineering , 2008, 13(6): 765-771
doi: 10.1007/s12257-008-0184-3
32 Wu S H, Jiang C D, Yi Y, Huang C J, Xu Y F, Tong Z F. Optimize conditions of liquefaction for producing manioc alcohol by high-gravity fermentation. Food Science , 2007, 28(10): 381-383 (in Chinese)
33 Rathore S S S, Paulsen M R, Sharma V, Singh V. Optimization of yeast and enzyme dose for dry-grind corn fermentation process for ethanol production. Transactions of the ASABE , 2009, 52: 867-875
34 Srichuwong S, Arakane M, Fujiwara M, Zhang Z L, Takahashi H, Tokuyasu K. Alkali-aided enzymatic viscosity reduction of sugar beet mash for novel bioethanol production process. Biomass and Bioenergy , 2010, 34(9): 1336-1341
doi: 10.1016/j.biombioe.2010.04.024
[1] K. Manikandan, T. Viruthagiri. Simultaneous saccharification and fermentation of wheat bran flour into ethanol using coculture of amylotic Aspergillus niger and thermotolerant Kluyveromyces marxianus[J]. Front Chem Eng Chin, 2009, 3(3): 240-249.
[2] LUO Peng, YANG Chuanmin, LIU Zhong, WANG Gaosheng. Study of simultaneous saccharification and fermentation for steam exploded wheat straw to ethanol [J]. Front. Chem. Sci. Eng., 2008, 2(4): 447-451.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed