Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2011, Vol. 5 Issue (4) : 401-408    https://doi.org/10.1007/s11705-011-1129-5
RESEARCH ARTICLE
Influence of Na+ on the synthesis of silicalite-1 catalysts for use in the vapor phase Beckmann rearrangement of cyclohexanone oxime
Rumin YANG, Fanhui MENG, Xiao WANG, Yaquan WANG()
Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
 Download: PDF(459 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Silicalite-1 was hydrothermally synthesized in the presence of different concentrations of Na+ using tetrapropylammonium hydroxide (TPAOH) as a template. The synthesis was followed by a base treatment. The silicalite-1samples were characterized using X-ray diffraction, scanning electron microscopy, N2 adsorption, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and NH3 temperature-programmed desorption. The samples were used as catalysts for the vapor phase Beckmann rearrangement of cyclohexanone oxime. During the synthesis, the sodium ions were incorporated onto the silicalite-1 crystals, but were then removed by the base treatment. All the catalysts exhibited nearly complete conversion of cyclohexanone oxime to ?-caprolactam with selectivities grater than 95%. Addition of less than 2.5 mol-% Na+ (relative to TPAOH) did not influence the catalytic properties. However, for Na+ concentrations≥5 mol-%, the particle sizes of silicalite-1 increased and the catalytic activities decreased, which can be attributed to carbon deposition. The results in this work are of great importance for the polymer industry.

Keywords silicalite-1      cyclohexanone oxime      vapor phase Beckmann rearrangement      ?-caprolactam     
Corresponding Author(s): WANG Yaquan,Email:yqwang@tju.edu.cn   
Issue Date: 05 December 2011
 Cite this article:   
Rumin YANG,Fanhui MENG,Xiao WANG, et al. Influence of Na+ on the synthesis of silicalite-1 catalysts for use in the vapor phase Beckmann rearrangement of cyclohexanone oxime[J]. Front Chem Sci Eng, 2011, 5(4): 401-408.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-011-1129-5
https://academic.hep.com.cn/fcse/EN/Y2011/V5/I4/401
Fig.1  XRD patterns of base treated S-1-Na- samples
SamplesRelative crystalinity /%Crystal size a) /nmSBET /(m2·g-1)Na/Si molar ratios
Before base treatment b)After base treatment b)Theoretical bulk Na/Si molar ratios c)
S-1-Na-0100170357000
S-1-Na-1103175373000.0023
S-1-Na-2.5981803660.00800.0057
S-1-Na-51012703790.01500.012
S-1-Na-10972703530.02600.023
S-1-Na-20982903440.04200.046
Tab.1  Properties of the base treated S-1-Na- samples
Fig.2  SEM images of base treated samples S-1-Na-
Fig.3  XPS Na 1s spectra of S-1-Na- samples without base treatment
Fig.4  FT-IR spectra of S-1-Na- before and after base treatment (Dotted lines represent the samples before base treatment, solid lines represent samples after base treatment)
Fig.5  Changes in the conversion of cyclohexanone oxime (a) and selectivity for ?-caprolactam (b) with time on stream (Reaction conditions: 638 K, 0.1 MPa, WHSV= 6 h, 30 wt-% cyclohexanone oxime and 1 wt-% water in methanol)
Fig.6  Amounts of coke formed after the reaction over base treated S-1-Na- catalysts
1 H?lderich W F, R?seler J, Heitmann G, Liebens A T. The use of zeolites in the synthesis of fine and intermediate chemicals. Catalysis Today , 1997, 37(4): 353–366
2 Sato H. Acidity control and catalysis of pentasil zeolites. Catalysis Reviews. Science and Engineering , 1997, 39(4): 395–424
3 Dahlhoff G, Niederer J P M, Hoelderich W F. e-Caprolactam: new by-product free synthesis routes. Catalysis Reviews , 2001, 43(4): 381–441
4 Mao D, Lu G, Chen Q. Vapor-phase Beckmann rearrangement of cyclohexanone oxime over B2O3 catalysts supported on TiO2-ZrO2 mixed oxide. Reaction Kinetics and Catalysis Letters 2002, 75(1): 75–80
5 Mao D S, Chen Q L, Lu G Z. Vapor-phase Beckmann rearrangement of cyclohexanone oxime over B2O3/TiO2-ZrO2. Applied Catalysis A, General , 2003, 244(2): 273–282
6 Xu B Q, Cheng S B, Zhang X, Zhu Q M. B2O3/ZrO2 for Beckmann rearrangement of cyclohexanone oxime: optimizing of the catalyst and reaction atmosphere. Catalysis Today , 2000, 63(2-4): 275–282
7 Heitmann G P, Dahlhoff G, Niederer J P M, H?lderich W F. Active sites of a [B]-ZSM-5 zeolite catalyst for the Beckmann rearrangement of cyclohexanone oxime to caprolactam. Journal of Catalysis , 2000, 194(1): 122–129
8 Heitmann G P, Dahlhoff G, H?lderich W F. Catalytically active sites for the Beckmann rearrangement of cyclohexanone oxime to ?-caprolactam. Journal of Catalysis , 1999, 186(1): 12–19
9 Kath H, Gl?ser R, Weitkamp J. Beckmann rearrangement of cyclohexanone oxime on MFI-type zeolites. Chemical Engineering & Technology , 2001, 24(2): 150–153
10 Takahashi T, Nasution M N A, Kai T. Effects of acid strength and micro pore size on ?-caprolactam selectivity and catalyst deactivation in vapor phase Beckmann rearrangement over acid solid catalysts. Applied Catalysis A, General , 2001, 210(1-2): 339–344
11 Ichihashi H, Kitamura M. Some aspects of the vapor phase Beckmann rearrangement for the production of ?-caprolactam over high silica MFI zeolites. Catalysis Today , 2002, 73(1-2): 23–28
12 Ichihashi H, Ishida M, Shiga A, Kitamura M, Suzuki T, Suenobu K, Sugita K. The catalysis of vapor-phase Beckmann rearrangement for the production of ?-caprolactam. Catalysis Surveys from Asia , 2003, 7(4): 261–270
13 Takahashi T, Kai T, Nakao E. Catalyst deactivation in the Beckmann rearrangement of cyclohexanone oxime over HZSM-5 zeolite and silica-alumina catalysts. Applied Catalysis A, General , 2004, 262(2): 137–142
14 Forni L, Fornasari G, Giordano G, Lucarelli C, Katovic A, Trifirò F, Perri C, Nagy J B. Vapor phase Beckmann rearrangement using high silica zeolite catalyst. Physical Chemistry Chemical Physics , 2004, 6: 1842–1847
15 Tao W C, Mao D S, Xia J C, Chen Q L, Hu Y. Effect of hydrofluoric acid post-treatments on catalytic performance of silicalite-1 for vapor-phase Beckmann rearrangement of cyclohexanone oxime. Chinese Journal of Catalysis , 2006, 27(3): 245–249
16 Chang J C, Ko A N. Beckmann rearrangement of cyclohexanone oxime to ?-caprolactam using mesoporous molecular sieves Al-SBA-15. Reaction Kinetics and Catalysis Letters , 2004, 83(2): 283–290
17 Zhang Y, Wang Y, Bu Y, Mi Z, Wu W, Min E, Han S, Fu S. Beckmann rearrangement of cyclohexanone oxime over Hβ zeolite and Hβ zeolite-supported boride. Catalysis Communications , 2005, 6(1): 53–56
18 Bu Y F. MFI Zeolites for the vapor phase Beckmann rearrangement of cyclohexanone oxime. Dissertation for the Doctoral degree . Tianjin: Tianjin University, 2005 (in Chinese)
19 Bu Y F, Wang Y Q, Zhang Y J, Wang L, Mi Z T, Wu W, Min E Z, Fu S B. Influences of ethylenediamine treatment of Silicalite-1 on the catalytic vapor-phase Beckmann rearrangement of cyclohexanone oxime. Catalysis Communications , 2007, 8(1): 16–20
20 Marthala V R R, Jiang Y, Huang J, Wang W, Gl?ser R, Hunger M. Beckmann rearrangement of 15N-cyclohexanone oxime on zeolites Silicalite-1, H-ZSM-5, and H-[B]ZSM-5 studied by solid-state NMR spectroscopy. Journal of the American Chemical Society , 2006, 128(46): 14812–14813
21 Bonelli B, Forni L, Aloise A, Nagy J B, Fornasari G, Garrone E, Gedeon A, Giordano G, Trifirò F. Beckmann rearrangement reaction: about the role of defect groups in high silica zeolite catalysts. Microporous and Mesoporous Materials , 2007, 101(1-2): 153–160
22 Zhang Y, Wang Y, Bu Y, Wang L, Mi Z, Wu W, Min E, Fu S, Zhu Z, He F, Han S. Synthesis of Ti-Hβ zeolites by liquid-solid isomorphous substitution and the catalytic properties in the vapor phase Beckmann rearrangement of cyclohexanone oxime. Reaction Kinetics and Catalysis Letters , 2007, 90(2): 365–372
23 Izumi Y, Ichihashi H, Shimazu Y, Kitamura M, Sato H. Development and industrialization of the vapor-phase Beckmann rearrangement process. Bulletin of the Chemical Society of Japan , 2007, 80(7): 1280–1287
24 Fernández A B, Lezcano-Gonzalez I, Boronat M, Blasco T, Corma A. NMR spectroscopy and theoretical calculations demonstrate the nature and location of active sites for the Beckmann rearrangement reaction in microporous materials. Journal of Catalysis , 2007, 249(1): 116–119
25 Marthala V R R, Rabl S, Huang J, Rezai S A S, Thomas B, Hunger M. In situ solid-state NMR investigations of the vapor-phase Beckmann rearrangement of 15N-cyclohexanone oxime on MFI-type zeolites and mesoporous SBA-15 materials in the absence and presence of the additive 13C-methanol. Journal of Catalysis , 2008, 257(1): 134–141
26 Pavel C C, Palkovits R, Schüth F, Schmidt W. The benefit of mesopores in ETS-10 on the vapor-phase Beckmann rearrangement of cyclohexanone oxime. Journal of Catalysis , 2008, 254(1): 84–90
27 Zhang Y, Wang Y, Bu Y. Vapor phase Beckmann rearrangement of cyclohexanone oxime on Hβ-zeolites treated by ammonia. Microporous and Mesoporous Materials , 2008, 107(3): 247–251
28 Sirijaraensre J, Limtrakul J. Effect of the acidic strength on the vapor phase Beckmann rearrangement of cyclohexanone oxime over the MFI zeolite: an embedded ONIOM study. Physical Chemistry Chemical Physics , 2009, 11(3): 578–585
29 Conesa T D, Luque R, Campelo J M, Luna D, Marinas J M, Romero A A. Gas-phase Beckmann rearrangement of cyclododecanone oxime on Al,B-MCM-41 mesoporous materials. Journal of Materials Science , 2009, 44(24): 6741–6746
30 Reddy B M, Reddy G K, Rao K N, Katta L. Influence of alumina and titania on the structure and catalytic properties of sulfated zirconia: Beckmann rearrangement. Journal of Molecular Catalysis A Chemical , 2009, 306(1-2): 62–68
31 Palkovits R, Schmidt W, Ilhan Y, Erdem-Senatalar A, Schüth F. Crosslinked TS-1 as stable catalyst for the Beckmann rearrangement of cyclohexanone oxime. Microporous and Mesoporous Materials , 2009, 117(1-2): 228–232
32 Cesana A, Palmery S, Buzzoni R, Spanò G, Rivetti F, Carnelli L. Silicalite-1 deactivation in vapour phase Beckmann rearrangement of cyclohexanone oxime to caprolactam. Catalysis Today , 2010, 154(3-4): 264–270
33 Bordoloi A, Halligudi S B. Catalytic properties of WOx/SBA-15 for vapor-phase Beckmann rearrangement of cyclohexanone oxime. Applied Catalysis A, General , 2010, 379(1-2): 141–147
34 Zhang D, Wang R, Yang X, Yao W. Vapor-phase Beckmann rearrangement of cyclohexanone oxime over phosphorus modified Si-MCM-41. Reaction Kinetics, Mechanisms and Catalysis , 2010, 101(2): 455–463
35 Persson A E, Schoeman B J, Sterte J, Otterstedt J E. Synthesis of stable suspensions of discrete colloidal zeolite (Na, TPA)ZSM-5 crystals. Zeolites , 1995, 15(7): 611–619
36 Van Grieken R, Sotelo J L, Menéndez J M, Melero J A. Anomalous crystallization mechanism in the synthesis of nanocrystalline ZSM-5. Microporous and Mesoporous Materials , 2000, 39(1-2): 135–147
37 Nam H J, Amemiya T, Murabayashi M, Itoh K. The influence of Na+ on the crystallite size of TiO2 and the photocatalytic activity. Research on Chemical Intermediates , 2005, 31(4): 365–370
38 Flanigen E M, Bennett J M, Grose R W, Cohen J P, Patton R L, Kirchner R M, Smith J V. Silicalite, a new hydrophobic crystalline silica molecular sieve. Nature , 1978, 271(5645): 512–516
doi: 10.1038/271512a0
39 Feng F, Jr Balkus K J. Recrystallization of layered silicates to silicalite-1. Microporous and Mesoporous Materials , 2004, 69(1-2): 85–96
40 Choudhary V R, Akolekar D B. Crystallization of silicalite-factors affecting its structure, crystal size and morphology. Materials Chemistry and Physics , 1988, 20(4-5): 299–308
41 Matsumura Y, Hashimoto K, Kobayashi H, Yoshida S. The role of sodium ions as adsorption sites in silicalite-1. Journal of the Chemical Society, Faraday Transactions , 1990, 86(3): 561–565
42 Butler J D, Poles T C. Beckmann rearrangement of cyclopentanone oxime catalysed by decationated zeolite. Journal of the Chemical Society, Perkin Transactions , 1973, 2: 1262–1266
[1] Juan XU,Yaquan WANG,Wenping FENG,Yi LIN,Shuhai WANG. Effect of triethylamine treatment of titanium silicalite-1 on propylene epoxidation[J]. Front. Chem. Sci. Eng., 2014, 8(4): 478-487.
[2] Pengxu YAO,Yaquan WANG,Teng ZHANG,Shuhai WANG,Xiaoxue WU. Effect of sodium ions in synthesis of titanium silicalite-1 on its catalytic performance for cyclohexanone ammoximation[J]. Front. Chem. Sci. Eng., 2014, 8(2): 149-155.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed