|
|
Fabrication, modification and environmental applications of TiO2 nanotube arrays (TNTAs) and nanoparticles |
S. ROHANI( ), T. ISIMJAN, A. MOHAMED, H. KAZEMIAN, M. SALEM, T. WANG |
Department of Chemical and Biochemical Engineering, The University of Western Ontario, London N6A 5B9, Canada |
|
|
Abstract Among the semiconductors, titanium dioxide has been identified as an effective photocatalyst due to its abundance, low cost, stability, and superior electronic energy band structure. Highly ordered nanotube arrays of titania were produced by anodization and mild sonication. The band gap energy of the titania nanotube arrays was reduced to 2.6 eV by co-doping with Fe, C, N atoms using an electrolyte solution containing K3Fe(CN)6. The photoconversion of phenol in a batch photoreactor increased to more than 18% based on the initial concentration of phenol by using a composite nanomaterial consisting of titania nanotube arrays and Pt/ZIF-8 nanoparticles. A layer-by-layer assembly technique for the deposition of titania nanoparticles was developed to fabricate air filters for the degradation of trace amounts of toluene in the air and preparation of superhyrophobic surfaces for oil-water separation and anti-corrosion surfaces.
|
Keywords
TiO2 nanotube arrays and nanoparticles
anodization
bandgap modification
layer-by-layer deposition
oil-water separation
|
Corresponding Author(s):
ROHANI S.,Email:srohani@uwo.ca
|
Issue Date: 05 March 2012
|
|
1 |
Adams D M, Brus L, Chidsey C E D, Creager S, Creutz C, Kagan C R, Kamat P V, Lieberman M, Lindsay S, Marcus R A, Metzger R M, Michel-Beyerle M E, Miller J R, Newton M D, Rolison D R, Sankey O, Schanze K S, Yardley J, Zhu X. Charge transfer on the nanoscale: current status. Journal of Physical Chemistry. B , 2003, 107(28): 6668-6697 doi: 10.1021/jp0268462
|
2 |
Alivisatos A P. Perspectives on the physical chemistry of semiconductor nanocrystals. Journal of Physical Chemistry , 1996, 100(31): 13226-13239 doi: 10.1021/jp9535506
|
3 |
Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots. Science , 1996, 271(5251): 933-937 doi: 10.1126/science.271.5251.933
|
4 |
Linsebigler A L, Lu G, Yates J T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical Reviews , 1995, 95(3): 735-758 doi: 10.1021/cr00035a013
|
5 |
Nakamura R, Ohashi N, Imanishi A, Osawa T, Matsumoto Y, Koinuma H, Nakato Y. Crystal-face dependences of surface band edges and hole reactivity, revealed by preparation of essentially atomically smooth and stable (110) and (100) n-TiO(2) (rutile) surfaces. Journal of Physical Chemistry B , 2005, 109(5): 1648-1651 doi: 10.1021/jp044710t pmid:16851137
|
6 |
Neumann B, Bogdanoff P, Tributsch H, Sakthivel S, Kisch H. Electrochemical mass spectroscopic and surface photovoltage studies of catalytic water photooxidation by undoped and carbon-doped titania. Journal of Physical Chemistry. B , 2005, 109(35): 16579-16586 doi: 10.1021/jp051339g pmid:16853109
|
7 |
Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature , 1972, 238(5358): 37-38 doi: 10.1038/238037a0 pmid:12635268
|
8 |
Paulose M, Mor G K, Varghese O K, Shankar K, Grimes C A. Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays. Journal of Photochemistry and Photobiology. A, 2006, 178(1): 8-15 doi: 10.1016/j.jphotochem.2005.06.013
|
9 |
Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T. Light-induced amphiphilic surfaces. Nature , 1997, 388(6641): 431-432 doi: 10.1038/41233
|
10 |
Yoriya S, Prakasam H E, Varghese O K, Shankar K, Paulose M, Mor G K, Latempa T J, Grimes C A. Initial studies on the hydrogen gas sensing properties of highly-ordered high aspect ratio TiO2 nanotube-arrays 20 m to 222 m in length. Sensors Letters , 2006, 4(3): 334-339 doi: 10.1166/sl.2006.042
|
11 |
Ngamsinlapasasathian S, Sakulkhaemaruethai S, Pavasupree S, Kitiyanan A, Sreethawong T, Suzuki Y, Yoshikawa S. Highly efficient dye-sensitized solar cell using nanocrystalline titania containing nanotube structure. Journal of Photochemistry and Photobiology. A , 2004, 164(1-3): 145-151 doi: 10.1016/j.jphotochem.2003.11.016
|
12 |
Hoyer P. Formation of a titanium dioxide nanotube array. Langmuir , 1996, 12(6): 1411-1413 doi: 10.1021/la9507803
|
13 |
Lakshmi B B, Dorhout P K, Martin C R. Sol-gel template synthesis of semiconductor nanostructures. Chemistry of Materials , 1997, 9(3): 857-862 doi: 10.1021/cm9605577
|
14 |
Zhang M, Brando Y, Wada K. Sol-gel template preparation of TiO2 nanotubues and nanorodes. Journal of Materials Science Letters , 2001, 20(2): 167-170 doi: 10.1023/A:1006739713220
|
15 |
Bavykin D V, Parmon V N, Lapkin A A, Walsh F C. The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. Journal of Materials Chemistry , 2004, 14(22): 3370-3377 doi: 10.1039/b406378c
|
16 |
Ou H H, Lo S L. Review of titania nanotubes synthesized via the hydrothermal treatment: Fabrication, modification, and application. Separation and Purification Technology , 2007, 58(1): 179-191 doi: 10.1016/j.seppur.2007.07.017
|
17 |
Zwilling V, Darque-Ceretti E, Boutry-Forveille A, David D, Perrin M Y, Aucouturier M. Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surface and Interface Analysis , 1999, 27(7): 629-637 doi: 10.1002/(SICI)1096-9918(199907)27:7<629::AID-SIA551>3.0.CO;2-0
|
18 |
Frank A J, Kopidakis N. And de Lagemaat, J. V. Electrons in nanostructured TiO2 solar cells: transport, recombination and photovoltaic properties. Coordination Chemistry Reviews , 2004, 248: 1165-1179 doi: 10.1016/j.ccr.2004.03.015
|
19 |
Law M, Greene L E, Johnson J C, Saykally R, Yang P. Nanowire dye-sensitized solar cells. Nature Materials , 2005, 4(6): 455-459 doi: 10.1038/nmat1387 pmid:15895100
|
20 |
Mor G K, Shankar K, Paulose M, Varghese O K, Grimes C A. Use of highly-ordered TiO(2) nanotube arrays in dye-sensitized solar cells. Nano Letters , 2006, 6(2): 215-218 doi: 10.1021/nl052099j pmid:16464037
|
21 |
Cao F, Oskam G, Meyer G J, Searson P C. Electron transport in porous nanocrystalline TiO2 photoelectrochemical cells. Journal of Physical Chemistry , 1996, 100(42): 17021-17027 doi: 10.1021/jp9616573
|
22 |
Vanmaekelbergh D, Vanmaekelbergh D. Trap-limited electronic transport in assemblies of nanometer-size TiO2 particles. Physical Review Letters , 1996, 77(16): 3427-3430 doi: 10.1103/PhysRevLett.77.3427 pmid:10062217
|
23 |
Wahl A, Ulmann M, Carroy A, Augustynski J. Highly selective photo-oxidation reactions at nanocrystalline TiO2 film electrodes. Journal of the Chemical Society, Chemical Communications, 1994, 2277-2278
|
24 |
Santato C, Ulmann M, Augustynski J. Photoelectrochemical properties of nanostructured tungsten trioxide films. Journal of Physical Chemistry B , 2001, 105(5): 936-940 doi: 10.1021/jp002232q
|
25 |
Adachi M, Murata Y, Okada I, Yoshikawa S. Formation of titania nanotubes and applications for dye-sensitized solar cells. Journal of the Electrochemical Society , 2003, 150(8): G488-G493 doi: 10.1149/1.1589763
|
26 |
Rao C N R, Govindaraj A. Nanotubes and Nanowires. Cambridge , UK: The Royal Society of Chemistry, 2005
|
27 |
Paulose M, Shankar K, Varghese O K, Mor G K, Grimes C A. Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells. Journal of Physics. D, Applied Physics , 2006, 39(12): 2498-2503 doi: 10.1088/0022-3727/39/12/005
|
28 |
Park J H, Kim S, Bard A J. Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Letters , 2006, 6(1): 24-28 doi: 10.1021/nl051807y pmid:16402781
|
29 |
Mohamed A, Rohani S. Modified TiO2 nanotube arrays (TNTAs): progressive strategies towards visible light responsive photoanode, a review. Energy &. Environmental Sciences , 2011, 4: 1065-1086
|
30 |
Gong D, Grimes C A, Varghese O K, Hu W, Singh R S, Chen Z, Dickey E. Titanium oxide nanotube arrays prepared by anodic oxidation. Journal of Materials Research , 2001, 16(12): 3331-3334 doi: 10.1557/JMR.2001.0457
|
31 |
Macák J M, Tsuchiya H, Schmuki P. High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angewandte Chemie International Edition , 2005, 44(14): 2100-2102 doi: 10.1002/anie.200462459 pmid:15736238
|
32 |
Zhao W, Ma W, Chen C, Zhao J, Shuai Z. Efficient degradation of toxic organic pollutants with Ni2O3/TiO(2-x)Bx under visible irradiation. Journal of the American Chemical Society , 2004, 126(15): 4782-4783 doi: 10.1021/ja0396753 pmid:15080674
|
33 |
Isimjan T T, Yang D Q, Rohani S, Ray A K. An innovative approach to synthesize highly-ordered TiO2 nanotubes. Journal of Nanoscience and Nanotechnology , 2011, 11(2): 1079-1083 doi: 10.1166/jnn.2011.3062 pmid:21456142
|
34 |
Cai Q, Yang L, Yu Y. Investigations on the self-organized growth of TiO2 nanotube arrays by anodic oxidization. Thin Solid Films , 2006, 515(4): 1802-1806 doi: 10.1016/j.tsf.2006.06.040
|
35 |
Wang H, Yip C T, Cheung K Y, Djurisic A B, Xie M H, Leung Y H,Chen W K.Titania-nanotube-array-based photovoltaic cells. Applied Physics Letters , 2006, 89: 023508,1-3
|
36 |
Deng L, Wang S, Liu D, Zhu B, Huang W, Wu S, Zhang S. Synthesis, characterization of Fe-doped TiO2 nanotubes with high photocatalytic activity. Catalysis Letters , 2009, 129(3-4): 513-518 doi: 10.1007/s10562-008-9834-5
|
37 |
Zaleska A. Doped-TiO2: a review.Recent Patents on Engineering , 2008, 2(3): 157-164 doi: 10.2174/187221208786306289
|
38 |
Pedraza-Avela J A, López R, Martínez-Ortega F, Páez-Mozo E A, Gómez R. Effect of chromium doping on visible light absorption of nanosized titania sol-gel. Journal of Nano Research , 2009, 5: 95-104 doi: 10.4028/www.scientific.net/JNanoR.5.95
|
39 |
Lei L, Su Y, Zhou M, Zhang X, Chen X. Fabrication of multi-non-metal-doped TiO2 nanotubes by anodization in mixed acid electrolyte. Materials Research Bulletin , 2007, 42(12): 2230-2236 doi: 10.1016/j.materresbull.2007.01.001
|
40 |
Isimjan T T, Ruby A E, Rohani S, Ray A K. The fabrication of highly ordered and visible-light-responsive Fe-C-N-codoped TiO2 nanotubes. Nanotechnology , 2010, 21(5): 055706 doi: 10.1088/0957-4484/21/5/055706 pmid:20023311
|
41 |
Isimjan T T, Kazemian H, Rohani S, Ray A K. Photocatalytic activities of Pt/ZIF-8 loaded highly ordered TiO2 nanotubes. Journal of Materials Chemistry , 2010, 20(45): 10241-10245 doi: 10.1039/c0jm02152k
|
42 |
Wang T, Isimjan T,Chen J,Rohani S. Transparent nanostructured coatings with UV-shielding and superhydrophobicity properties. Nanotechnology , 2011, 22(26): 265708/1-265708/7
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|