Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2012, Vol. 6 Issue (1) : 3-12    https://doi.org/10.1007/s11705-011-1161-5
REVIEW ARTICLE
Computational fluid dynamics applied to high temperature hydrogen separation membranes
Guozhao JI1, Guoxiong WANG1, Kamel HOOMAN2, Suresh BHATIA1, Jo?o C. DINIZ da COSTA1(email.png)
1. 1. School of Chemical Engineering, the University of Queensland, Brisbane 4072, Australia; 2. 2. School of Mechanical and Mining Engineering, the University of Queensland, Brisbane 4072, Australia
 Download: PDF(312 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This work reviews the development of computational fluid dynamics (CFD) modeling for hydrogen separation, with a focus on high temperature membranes to address industrial requirements in terms of membrane systems as contactors, or in membrane reactor arrangements. CFD modeling of membranes attracts interesting challenges as the membrane provides a discontinuity of flow, and therefore cannot be solved by the Navier-Stokes equations. To address this problem, the concept of source has been introduced to understand gas flows on both sides or domains (feed and permeate) of the membrane. This is an important solution, as the gas flow and concentrations in the permeate domain are intrinsically affected by the gas flow and concentrations in the feed domain and vice-versa. In turn, the source term will depend on the membrane used, as different membrane materials comply with different transport mechanisms, in addition to varying gas selectivity and fluxes. This work also addresses concentration polarization, a common effect in membrane systems, though its significance is dependent upon the performance of the membrane coupled with the operating conditions. Finally, CFD modeling is shifting from simplified single gas simulation to industrial gas mixtures, when the mathematical treatment becomes more complex.

Keywords membrane      gas separation      computational fluid dynamics      concentration polarization      hydrogen     
Corresponding Author(s): COSTA Jo?o C. DINIZ da,Email:j.dacosta@uq.edu.au   
Issue Date: 05 March 2012
 Cite this article:   
Guozhao JI,Guoxiong WANG,Kamel HOOMAN, et al. Computational fluid dynamics applied to high temperature hydrogen separation membranes[J]. Front Chem Sci Eng, 2012, 6(1): 3-12.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-011-1161-5
https://academic.hep.com.cn/fcse/EN/Y2012/V6/I1/3
1 Marriott J I, S?rensen E, Bogle I D L. Detailed mathematical modelling of membrane modules. Computers & Chemical Engineering , 2001, 25(4-6): 693-700
doi: 10.1016/S0098-1354(01)00670-6
2 Wiley D E, Fletcher D F. Computational fluid dynamics modelling of flow and permeation for pressure-driven membrane processes. Desalination , 2002, 145(1-3): 183-186
doi: 10.1016/S0011-9164(02)00406-X
3 Huang L, Morrissey M T. Finite element analysis as a tool for crossflow membrane filter simulation. Journal of Membrane Science , 1999, 155(1): 19-30
doi: 10.1016/S0376-7388(98)00300-7
4 Ghidossi R, Veyret D, Moulin P. Computational fluid dynamics applied to membranes: state of the art and opportunities. Chemical Engineering and Processing , 2006, 45(6): 437-454
doi: 10.1016/j.cep.2005.11.002
5 Bao L, Lipscomb G G. Effect of random fiber packing on the performance of shell-fed hollow-fiber gas separation modules. Desalination , 2002, 146(1-3): 243-248
doi: 10.1016/S0011-9164(02)00481-2
6 Lipscomb G G, Sonalkar S. Sources of non-ideal flow distribution and their effect on the performance of hollow fiber gas separation modules. Separation & Purification Reviews , 2005, 33(1): 41-76
doi: 10.1081/SPM-120030236
7 Takaba H, Nakao S. Computational fluid dynamics study on concentration polarization in H2/CO separation membranes. Journal of Membrane Science , 2005, 249(1-2): 83-88
doi: 10.1016/j.memsci.2004.09.038
8 Abdel-jawad M M, Gopalakrishnan S, Duke M C, Macrossan M N, Schneider P S, Diniz da Costa J C. Flowfields on feed and permeate sides of tubular molecular sieving silica (MSS) membranes. Journal of Membrane Science , 2007, 299(1-2): 229-235
doi: 10.1016/j.memsci.2007.04.046
9 Koros W J, Fleming G K. Membrane-based gas separation. Journal of Membrane Science , 1993, 83(1): 1-80
doi: 10.1016/0376-7388(93)80013-N
10 McLellan B, Shoko E, Dicks A L, Diniz da Costa J C. Hydrogen production and utilisation opportunities for Australia. International Journal of Hydrogen Energy , 2005, 30(6): 669-679
doi: 10.1016/j.ijhydene.2004.06.008
11 Smart S, Lin C X C, Ding L, Thambimuthu K, Diniz da Costa J C. Ceramic membranes for gas processing in coal gasification. Energy & Environmental Science , 2010, 3(3): 268-278
doi: 10.1039/b924327e
12 Uhlmann D, Smart S, Diniz da Costa J C. H2S stability and separation performance of cobalt oxide silica membranes. Journal of Membrane Science , 2011, 380(1-2): 48-54
doi: 10.1016/j.memsci.2011.06.025
13 Zhang J, Liu D, He M, Xu H, Li W. Experimental and simulation studies on concentration polarization in H2 enrichment by highly permeable and selective Pd membranes. Journal of Membrane Science , 2006, 274(1-2): 83-91
doi: 10.1016/j.memsci.2005.07.047
14 Wesseling P. Principles of Computational Fluid Dynamics. Berlin: Springer, 2010
15 Tu J, Yeoh G H, Liu C. Computational fluid dynamics: a practical approach. Cambridge: Butterworth-Heinemann, 2008
16 Anderson J D. Computational fluid dynamics: the basics with applications.New York: McGraw-Hill, 1995
17 Yacou C, Smart S, Diniz da Costa J C. Long term performance of cobalt oxide silica membrane module for high temperature H2 separation. Energy & Environmental Science , 2011,
doi: 10.1039/c2ee03247c
18 Coroneo M, Montante G, Catalano J, Paglianti A. Modelling the effect of operating conditions on hydrodynamics and mass transfer in a Pd-Ag membrane module for H2 purification. Journal of Membrane Science , 2009, 343(1-2): 34-41
doi: 10.1016/j.memsci.2009.07.008
19 Koukou M K, Chaloulou G, Papayannakos N, Markatos N C. Mathematical modelling of the performance of non-isothermal membrane reactors. International Journal of Heat and Mass Transfer , 1997, 40(10): 2407-2417
doi: 10.1016/S0017-9310(96)00287-6
20 Koukou M K, Papayannakos N, Markatos N C. Dispersion effects on membrane reactor performance. AIChE Journal. American Institute of Chemical Engineers , 1996, 42(9): 2607-2615
doi: 10.1002/aic.690420921
21 Koukou M K, Papayannakos N, Markatos N C. On the importance of non-ideal flow effects in the operation of industrial-scale adiabatic membrane reactors. Chemical Engineering Journal , 2001, 83(2): 95-105
doi: 10.1016/S1385-8947(00)00243-6
22 Koukou M K, Papayannakos N, Markatos N C, Bracht M, Alderliesten P T. Simulation tools for the design of industrial-scale membrane reactors. Chemical Engineering Research & Design , 1998, 76(8): 911-920
doi: 10.1205/026387698525711
23 Koukou M K, Papayannakos N, Markatos N C, Bracht M, Van Veen H M, Roskam A. Performance of ceramic membranes at elevated pressure and temperature: effect of non-ideal flow conditions in a pilot scale membrane separator. Journal of Membrane Science , 1999, 155(2): 241-259
doi: 10.1016/S0376-7388(98)00315-9
24 Kawachale N, Kumar A, Kirpalani D M. Numerical investigation of hydrocarbon enrichment of process gas mixtures by permeation through polymeric membranes. Chemical Engineering & Technology , 2008, 31(1): 58-65
doi: 10.1002/ceat.200700263
25 Kawachale N, Kumar A, Kirpalani D M. A flow distribution study of laboratory scale membrane gas separation cells. Journal of Membrane Science , 2009, 332(1-2): 81-88
doi: 10.1016/j.memsci.2009.01.042
26 Kawachale N, Kirpalani D M, Kumar A. A mass transport and hydrodynamic evaluation of membrane separation cell. Chemical Engineering and Processing: Process Intensification , 2010, 49(7): 680-688
doi: 10.1016/j.cep.2009.08.001
27 de Lange R S A, Hekkink J H A, Keizer K, Burggraaf A J, Ma Y H. Sorption studies of microporous sol-gel modified ceramic membranes. Journal of Porous Materials , 1995, 2(2): 141-149
doi: 10.1007/BF00489722
28 Diniz da Costa J C, Lu G Q, Rudolph V, Lin Y S, Novel molecular sieve silica (MSS) membranes: characterisation and permeation of single-step and two-step sol-gel membranes. Journal of Membrane Science , 2002, 198(1): 9-21
doi: 10.1016/S0376-7388(01)00565-8
29 Barrer R M. Porous crystal membranes. Journal of the Chemical Society, Faraday Transactions , 1990, 86(7): 1123-1130
doi: 10.1039/ft9908601123
30 Krishna R, Baur R. Analytic solution of the Maxwell-Stefan equations for multicomponent permeation across a zeolite membrane. Chemical Engineering Journal , 2004, 97(1): 37-45
doi: 10.1016/S1385-8947(03)00149-9
31 Krishna R, van Baten J M. Unified Maxwell-Stefan description of binary mixture diffusion in micro- and meso-porous materials. Chemical Engineering Science , 2009, 64(13): 3159-3178
doi: 10.1016/j.ces.2009.03.047
32 Krishna R, van Baten J M. Influence of adsorption on the diffusion selectivity for mixture permeation across mesoporous membranes. Journal of Membrane Science , 2011, 369(1-2): 545-549
doi: 10.1016/j.memsci.2010.12.042
33 Krishna R, van Baten J M. Maxwell-Stefan modeling of slowing-down effects in mixed gas permeation across porous membranes. Journal of Membrane Science , 2011, 383(1-2): 289-300
doi: 10.1016/j.memsci.2011.08.067
34 Krishna R, Wesselingh J A. The Maxwell-Stefan approach to mass transfer. Chemical Engineering Science , 1997, 52(6): 861-911
doi: 10.1016/S0009-2509(96)00458-7
35 Damak K, Ayadi A, Zeghmati B, Schmitz P. A new Navier-Stokes and Darcy's law combined model for fluid flow in crossflow filtration tubular membranes. Desalination , 2004, 161(1): 67-77
doi: 10.1016/S0011-9164(04)90041-0
36 Das D B, Nassehi V, Wakeman R J. A finite volume model for the hydrodynamics of combined free and porous flow in sub-surface regions. Advances in Environmental Research , 2002, 7(1): 35-58
doi: 10.1016/S1093-0191(01)00108-3
37 Pak A, Mohammadi T, Hosseinalipour S M, Allahdini V. CFD modeling of porous membranes. Desalination , 2008, 222(1-3): 482-488
doi: 10.1016/j.desal.2007.01.152
38 Caravella A, Barbieri G, Drioli E. Concentration polarization analysis in self-supported Pd-based membranes. Separation and Purification Technology , 2009, 66(3): 613-624
doi: 10.1016/j.seppur.2009.01.008
39 Haraya K, Hakuta T, Yoshitome H, Kimura S. A study of concentration polarization phenomenon on the surface of a gas separation membrane. Separation Science and Technology , 1987, 22(5): 1425-1438
doi: 10.1080/01496398708058408
40 He G, Mi Y, Lock Yue P, Chen G. Theoretical study on concentration polarization in gas separation membrane processes. Journal of Membrane Science , 1999, 153(2): 243-258
doi: 10.1016/S0376-7388(98)00257-9
41 Mourgues A, Sanchez J. Theoretical analysis of concentration polarization in membrane modules for gas separation with feed inside the hollow-fibers. Journal of Membrane Science , 2005, 252(1-2): 133-144
doi: 10.1016/j.memsci.2004.11.024
42 Nemmani R G, Suggala S V. An explicit solution for concentration polarization for gas separation in a hollow fiber membrane. Separation Science and Technology , 2010, 45(5): 581-591
doi: 10.1080/01496390903563074
44 Coroneo M, Montante G, Giacinti Baschetti M, Paglianti A. CFD modelling of inorganic membrane modules for gas mixture separation. Chemical Engineering Science , 2009, 64(5): 1085-1094
doi: 10.1016/j.ces.2008.10.065
45 Nair B K R, Harold M P. Experiments and modeling of transport in composite Pd and Pd/Ag coated alumina hollow fibers. Journal of Membrane Science , 2008, 311(1-2): 53-67
doi: 10.1016/j.memsci.2007.11.034
46 Chasanis P, Kenig E Y, Hessel V, Sehmitt S. Modelling and simulation of a membrane microreactor using computational fluid dynamics. Amsterdam: Elsevier, 2008
47 Mori N, Nakamura T, Noda K, Sakai O, Takahashi A, Ogawa N, Sakai H, Iwamoto Y, Hattori T. Reactor configuration and concentration polarization in methane steam reforming by a membrane reactor with a highly hydrogen-permeable membrane. Industrial & Engineering Chemistry Research , 2007, 46(7): 1952-1958
doi: 10.1021/ie060989j
48 Coroneo M, Montante G, Paglianti A P. Numerical and experimental fluid-dynamic analysis to improve the mass transfer performances of Pd-Ag membrane modules for hydrogen purification. Industrial & Engineering Chemistry Research , 2010, 49(19): 9300-9309
doi: 10.1021/ie100840z
49 Battersby S, Duke M C, Liu S, Rudolph V, Costa J C D. Metal doped silica membrane reactor: operational effects of reaction and permeation for the water gas shift reaction. Journal of Membrane Science , 2008, 316(1-2): 46-52
doi: 10.1016/j.memsci.2007.11.021
50 Battersby S, Tasaki T, Smart S, Ladewig B, Liu S, Duke M C, Rudolph V, Diniz da Costa J C. Performance of cobalt silica membranes in gas mixture separation. Journal of Membrane Science , 2009, 329(1-2): 91-98
doi: 10.1016/j.memsci.2008.12.051
51 Battersby S, Teixeira P W, Beltramini J, Duke M C, Rudolph V, Diniz da Costa J C. An analysis of the Peclet and Damkohler numbers for dehydrogenation reactions using molecular sieve silica (MSS) membrane reactors. Catalysis Today , 2006, 116(1): 12-17
doi: 10.1016/j.cattod.2006.04.004
52 Sholl D S, Johnson J K. Materials science. Making high-flux membranes with carbon nanotubes. Science , 2006, 312(5776): 1003-1004
doi: 10.1126/science.1127261 pmid:16709770
53 Leo A, Liu S, Diniz da Costa J C. Production of pure oxygen from BSCF hollow fiber membranes using steam sweep. Separation and Purification Technology , 2011, 78(2): 220-227
doi: 10.1016/j.seppur.2011.02.006
54 Leo A, Smart S, Liu S, Diniz da Costa J C. High performance perovskite hollow fibres for oxygen separation. Journal of Membrane Science , 2011, 368(1-2): 64-68
doi: 10.1016/j.memsci.2010.11.002
55 Feron P, van Heuven J W, Akkerhuis J J, van der Welle R. Design and development of a membrane testcell with uniform mass transfer: application to characterisation of high flux gas separation membranes. Journal of Membrane Science , 1993, 80(1): 157-194
doi: 10.1016/0376-7388(93)85140-R
56 Liu S, Peng M, Vane L. CFD simulation of effect of baffle on mass transfer in a slit-type pervaporation module. Journal of Membrane Science , 2005, 265(1-2): 124-136
doi: 10.1016/j.memsci.2005.04.048
57 Peng M, Vane L M, Liu S X. Numerical simulation of concentration polarization in a pervaporation module. Separation Science and Technology , 2010, 39(6): 1239-1257
doi: 10.1081/SS-120030480
58 Liu S X, Peng M, Vane L. CFD modeling of pervaporative mass transfer in the boundary layer. Chemical Engineering Science , 2004, 59(24): 5853-5857
doi: 10.1016/j.ces.2004.07.001
[1] Feng Sun, Jinren Lu, Yuhong Wang, Jie Xiong, Congjie Gao, Jia Xu. Reductant-assisted polydopamine-modified membranes for efficient water purification[J]. Front. Chem. Sci. Eng., 2021, 15(1): 109-117.
[2] Huaiwei Shi, Teng Zhou. Computational design of heterogeneous catalysts and gas separation materials for advanced chemical processing[J]. Front. Chem. Sci. Eng., 2021, 15(1): 49-59.
[3] Xin Wang, Wei Cui, Bin Li, Xiaojie Zhang, Yongxin Zhang, Yaodong Huang. Supramolecular self-assembly of two-component systems comprising aromatic amides/Schiff base and tartaric acid[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1112-1121.
[4] Jiehui Zeng, Jianxian Zeng, Hu Zhou, Guoqing Liu, Zhengqiu Yuan, Jian Jian. Ion-imprinted silica gel and its dynamic membrane for nickel ion removal from wastewaters[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1018-1028.
[5] Kai Li, Tengteng Lyu, Junyi He, Ben W. L. Jang. Selective hydrogenation of acetylene over Pd/CeO2[J]. Front. Chem. Sci. Eng., 2020, 14(6): 929-936.
[6] Jun Wei, Jianbo Zhao, Di Cai, Wenqiang Ren, Hui Cao, Tianwei Tan. Synthesis of micro/meso porous carbon for ultrahigh hydrogen adsorption using cross-linked polyaspartic acid[J]. Front. Chem. Sci. Eng., 2020, 14(5): 857-867.
[7] Edward Mohamed Hadji, Bo Fu, Ayob Abebe, Hafiz Muhammad Bilal, Jingtao Wang. Sponge-based materials for oil spill cleanups: A review[J]. Front. Chem. Sci. Eng., 2020, 14(5): 749-762.
[8] Ye Zhang, Jian Song, Josue Quispe Mayta, Fusheng Pan, Xue Gao, Mei Li, Yimeng Song, Meidi Wang, Xingzhong Cao, Zhongyi Jiang. Enhanced desulfurization performance of hybrid membranes using embedded hierarchical porous SBA-15[J]. Front. Chem. Sci. Eng., 2020, 14(4): 661-672.
[9] Feichao Wu, Yanling Wang, Xiongfu Zhang. Flow synthesis of a novel zirconium-based UiO-66 nanofiltration membrane and its performance in the removal of p-nitrophenol from water[J]. Front. Chem. Sci. Eng., 2020, 14(4): 651-660.
[10] Xinxiang Cao, Tengteng Lyu, Wentao Xie, Arash Mirjalili, Adelaide Bradicich, Ricky Huitema, Ben W.-L. Jang, Jong K. Keum, Karren More, Changjun Liu, Xiaoliang Yan. Preparation and investigation of Pd doped Cu catalysts for selective hydrogenation of acetylene[J]. Front. Chem. Sci. Eng., 2020, 14(4): 522-533.
[11] Majid Peyravi. Preparation of adsorptive nanoporous membrane using powder activated carbon: Isotherm and thermodynamic studies[J]. Front. Chem. Sci. Eng., 2020, 14(4): 673-687.
[12] Colin A. Scholes. Pilot plants of membrane technology in industry: Challenges and key learnings[J]. Front. Chem. Sci. Eng., 2020, 14(3): 305-316.
[13] Mahboube Ghahramaninezhad, Fatemeh Mohajer, Mahdi Niknam Shahrak. Improved CO2 capture performances of ZIF-90 through sequential reduction and lithiation reactions to form a hard/hard structure[J]. Front. Chem. Sci. Eng., 2020, 14(3): 425-435.
[14] Guoxing Chen, Marc Widenmeyer, Binjie Tang, Louise Kaeswurm, Ling Wang, Armin Feldhoff, Anke Weidenkaff. A CO and CO2 tolerating (La0.9Ca0.1)2(Ni0.75Cu0.25)O4+d Ruddlesden-Popper membrane for oxygen separation[J]. Front. Chem. Sci. Eng., 2020, 14(3): 405-414.
[15] Shinji Kanehashi, Colin A. Scholes. Perspective of mixed matrix membranes for carbon capture[J]. Front. Chem. Sci. Eng., 2020, 14(3): 460-469.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed