Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2012, Vol. 6 Issue (3) : 356-368    https://doi.org/10.1007/s11705-012-0903-3
REVIEW ARTICLE
Advances and perspectives in catalysts for liquid-phase oxidation of cyclohexane
Hui LI, Yuanbin SHE(), Tao WANG
Institute of Green Chemistry and Fine Chemicals, Beijing University of Technology, Beijing 100124, China
 Download: PDF(240 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The latest progress and developments in catalysts for the oxidation of cyclohexane are reviewed. Catalytic systems for the oxidation of cyclohexane including metal supported, metal oxides, molecular sieves, metal substituted polyoxometalates, photocatalysts, organocatalysts, Gif systems, metal-organic catalysts and metalloporphyrins are discussed with a particular emphasis on metalloporphyrin catalytic systems. The advantages and disadvantages of these methods are summarized and analyzed. Finally, the development trends in the oxidation technology of cyclohexane are examined.

Keywords cyclohexane      liquid-phase oxidation      catalysis     
Corresponding Author(s): SHE Yuanbin,Email:sheyb@bjut.edu.cn   
Issue Date: 05 September 2012
 Cite this article:   
Hui LI,Yuanbin SHE,Tao WANG. Advances and perspectives in catalysts for liquid-phase oxidation of cyclohexane[J]. Front Chem Sci Eng, 2012, 6(3): 356-368.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-012-0903-3
https://academic.hep.com.cn/fcse/EN/Y2012/V6/I3/356
Fig.1  The mechanism of catalytic oxidation with NHPI or NHS
Fig.2  Structures of the metallporphyrins
Fig.3  Structure of the bisironporphyrin complex (-ClTPPFe)O
Fig.4  Structures of metallo-deuteroporphyrins and metallo-tetraphenylporphyrins []
Catalyst b)TOF /h-1 a)Products selectivity /mol%
CyclohexanolCyclohexanoneAdipic acidOthers
CoCl16Pc0.1613.553.623.922.5
CoCl16Pc-X(0.27)18419.451.120.78.8
Cu(NO2)4Pc0.0446.153.900
Cu(NO2)4Pc-X(0.14)13278.921.200
Tab.1  Selective oxidation of cyclohexane over MPc complexes in acetonitrile
Fig.5  Structures of MnAPTMPP, MnAPTPP and MnAPTCPP
Fig.6  Proposed biologic-chemical-cycle coupling mechanism
Fig.7  Possible mechanism for the aerobic oxidation of cyclohexane
Fig.8  Complete mechanism for the conversion of cyclohexane to adipic acid
1 Labinger J A, Bercaw J E. Understanding and exploiting C–H bond activation. Nature , 2002, 417(6888): 507–514
doi: 10.1038/417507a
2 Newhouse T, Baran P S. If C–H bonds could talk: selective C–H bond oxidation. Angewandte Chemie International Edition , 2011, 50(15): 3362–3374
doi: 10.1002/anie.201006368
3 Neuenschwander U, Turra N, Aellig C, Mania P, Hermans I. Understanding selective oxidations. Chimia , 2010, 64(4): 225–230
doi: 10.2533/chimia.2010.225
4 Jevtic R, Ramachandran P A, Dudukovic M P. Effect of oxygen on cyclohexane oxidation: a stirred tank study. Industrial & Engineering Chemistry Research , 2009, 48(17): 7986–7993
doi: 10.1021/ie900093q
5 Guha S K, Obora Y, Ishihara D, Matsubara H, Ryu I, Ishii Y. Aerobic oxidation of cyclohexane using N-hydroxyphthalimide bearing fluoroalkyl chains. Advanced Synthesis & Catalysis , 2008, 350(9): 1323–1330
doi: 10.1002/adsc.200800057
6 Yuan Y, Ji H B, Chen Y X, Han Y, Song X F, She Y B, Zhong R G. Study on reaction conditions of biomimetic synthesis of adipic acid from cyclohexane by catalytic oxidation with oxygen. Modern Chemical Industry , 2004, 24(6): 40–42 (in Chinese)
7 Yuan Y, Ji H B, Chen Y X, Han Y, Song X F, She Y B, Zhong R G. Oxidation of cyclohexane to adipic acid using Fe-porphyrin as a biomimetic catalyst. Organic Process Research & Development , 2004, 8(3): 418–420
doi: 10.1021/op049974s
8 Borah P, Datta A. Exfoliated VOPO4·2H2O dispersed on alumina as a novel catalyst for the selective oxidation of cyclohexane. Applied Catalysis A: General , 2010, 376(1-2): 19–24
doi: 10.1016/j.apcata.2009.11.020
9 Borah P, Ramesh A, Datta A. Dispersion of VOPO4·2H2O on different supports through exfoliation and their catalytic activity for the selective oxidation of cyclohexane. Catalysis Communications , 2010, 12(2): 110–115
doi: 10.1016/j.catcom.2010.08.012
10 Zhou L P, Xu J, Miao H, Wang F, Li X Q. Catalytic oxidation of cyclohexane to cyclohexanol and cyclohexanone over Co3O4 nanocrystals with molecular oxygen. Applied Catalysis A: General , 2005, 292: 223–228
doi: 10.1016/j.apcata.2005.06.018
11 Yuan W W, Guo Z W, Jin H B. Synthesis of nanostructured iron oxide and its effect on the cyclohexane oxidation reaction. Journal of Beijing University of Chemical Technology , 2008, 35(4): 6–10 (in Chinese)
12 Tong J, Bo L, Li Z, Lei Z, Xia C. Magnetic CoFe2O4 nanocrystal: a novel and efficient heterogeneous catalyst for aerobic oxidation of cyclohexane. Journal of Molecular Catalysis A Chemical , 2009, 307(1-2): 58–63
doi: 10.1016/j.molcata.2009.03.010
13 Zhou L P, Yang G Y, Zhang W, Sun Z Q, Gao J, Miao H, Chen C, Ma H, Li X Q, Zhang Q H, Wang F, Tong X L, Xu J. Advances and perspectives in catalytic oxidation of hydrocarbons in liquid phase. Progress in Natural Science , 2007, 17(9): 1003–1011
14 Li L, Ji W J, Au C T. Gold nanoparticles supported on mesoporous silica and their catalytic application. Progress in Chemistry , 2009, 21(9): 1742–1749 (in Chinese)
15 Zhao R, Ji D, Lv G M, Qian G, Yan L, Wang X L, Suo J S. A highly efficient oxidation of cyclohexane over Au/ZSM-5 molecular sieve catalyst with oxygen as oxidant. Chemical Communications , 2004, (7): 904–905
doi: 10.1039/b315098d
16 Lu G M, Zhao R, Qian G, Qi Y X, Wang X L, Suo J S. A highly efficient catalyst Au/MCM-41 for selective oxidation cyclohexane using oxygen. Catalysis Letters , 2004, 97(3-4): 115–118
doi: 10.1023/B:CATL.0000038571.97121.b7
17 Gui J Z, Du J L, Liu D, Song L J, Zhang X T, Sun Z L. Synthesis and catalytic properties of Au-SBA-15 mesoporous zeolite. Industrial Catalysis , 2006, 14(5): 56–60 (in Chinese)
18 Xu L X, He C H, Zhu M Q, Wu K J, Lai Y L. Surface stabilization of gold by sol-gel post-modification of alumina support with silica for cyclohexane oxidation. Catalysis Communications , 2008, 9(5): 816–820
doi: 10.1016/j.catcom.2007.09.005
19 Xu L X, He C H, Zhu M Q, Fang S. A highly active Au/Al2O3 catalyst for cyclohexane oxidation using molecular oxygen. Catalysis Letters , 2007, 114(3-4): 202–205
doi: 10.1007/s10562-007-9058-0
20 Xu L X, He C H, Zhu M Q, Wu K J, Lai Y L. Silica-supported gold catalyst modified by doping with titania for cyclohexane oxidation. Catalysis Letters , 2007, 118(3-4): 248–253
doi: 10.1007/s10562-007-9178-6
21 Xu L X, He C H, Zhu M Q, Wu K J, Xu Y L, Zhao J. Cyclohexane oxidation over nano gold catalysts supported on zirconia-modified alumina. Journal of Chemical Engineering of Chinese Universities , 2009, 23(2): 309–313 (in Chinese)
22 Wang J Y, Zhao H, Zhang X J, Liu R J, Hu Y Q. Oxidation of cyclohexane catalyzed by TS-1 in ionic liquid with tert-butyl-hydroperoxide. Chinese Journal of Chemical Engineering , 2008, 16(3): 373–375
doi: 10.1016/S1004-9541(08)60091-9
23 Selvam P, Paulose T A P. Transition-metal (Ti, V, Cr, Mn, Fe, Co, Cu) containing ordered nanoporous materials: novel heterogeneous catalysts for selective oxidation reactions. Journal of Nanoscience and Nanotechnology , 2006, 6(6): 1758–1764
doi: 10.1166/jnn.2006.239
24 Li J, Li X, Shi Y, Mao D, Lu G. Selective oxidation of cyclohexane by oxygen in a solvent-free system over lanthanide-containing AlPO-5. Catalysis Letters , 2010, 137(3-4): 180–189
doi: 10.1007/s10562-010-0352-x
25 Arends I, Sheldon R A. Activities and stabilities of heterogeneous catalysts in selective liquid phase oxidations: recent developments. Applied Catalysis A, General , 2001, 212(1-2): 175–187
doi: 10.1016/S0926-860X(00)00855-3
26 Sheldon R A, Wallau M, Arends I, Schuchardt U. Heterogeneous catalysts for liquid-phase oxidations: philosophers’ stones or trojan horses? Accounts of Chemical Research , 1998, 31(8): 485–493
doi: 10.1021/ar9700163
27 Lee J K, Melsheimer J, Berndt S, Mestl G, Schlogl R, Kohler K. Transient responses of the local electronic and geometric structures of vanado-molybdo-phoshate catalysts H3+nPVnMo12-nO40 in selective oxidation. Applied Catalysis A, General , 2001, 214(1): 125–148
doi: 10.1016/S0926-860X(01)00485-9
28 Sim?es M M Q, Concei??o C M M, Gamelas J A F, Domingues P M D N, Cavaleiro A M V, Cavaleiro J A S, Ferrer-Correia A J V, Johnstone R A W. Keggin-type polyoxotungstates as catalysts in the oxidation of cyclohexane by dilute aqueous hydrogen peroxide. Journal of Molecular Catalysis A Chemical , 1999, 144(3): 461–468
doi: 10.1016/S1381-1169(99)00025-4
29 Jing S B, Guan J Q, Wang Z L, Zhu W C, Wang G J. Application of dawson-type molybdovanadophosphoric heteropolyacid to oxidation of cyclohexane. Journal of Jilin University , 2008, 46(2): 336–340 (Science Edition) (in Chinese)
30 Maldotti A, Molinari A, Amadelli R. Photocatalysis with organized systems for the oxofunctionalization of hydrocarbons by O2. Chemical Reviews , 2002, 102(10): 3811–3836
doi: 10.1021/cr010364p
31 Brusa M A, Grela M A. Photon flux and wavelength effects on the selectivity and product yields of the photocatalytic air oxidation of neat cyclohexane on TiO2 particles. Journal of Physical Chemistry B , 2005, 109(5): 1914–1918
doi: 10.1021/jp045602+
32 Shimizu K, Murata Y, Satsuma A. Dicopper(II)-dioxygen complexes in Y zeolite for selective catalytic oxidation of cyclohexane under photoirradiation. Journal of Physical Chemistry C , 2007, 111(51): 19043–19051
doi: 10.1021/jp0767821
33 Ishii Y, Sakaguchi S. A new strategy for alkane oxidation with O2 using N-hydroxyphthalimide (NHPI) as a radical catalyst. Catalysis Surveys from Japan , 1999, 3(1): 27–35
doi: 10.1023/A:1019059315516
34 Ishii Y, Sakaguchi S, Iwahama T. Innovation of hydrocarbon oxidation with molecular oxygen and related reactions. Advanced Synthesis & Catalysis , 2001, 343(5): 393–427
doi: 10.1002/1615-4169(200107)343:5<393::AID-ADSC393>3.0.CO;2-K
35 Sawatari N, Yokota T, Sakaguchi S, Ishii Y. Alkane oxidation with air catalyzed by lipophilic N-hydroxyphthalimides without any solvent. Journal of Organic Chemistry , 2001, 66(23): 7889–7891
doi: 10.1021/jo0158276
36 Baucherel X, Gonsalvi L, Arends I W C E, Ellwood S, Sheldon R A. Aerobic oxidation of cycloalkanes, alcohols and ethylbenzene catalyzed by the novel carbon radical chain promoter NHS (N-hydroxysaccharin). Advanced Synthesis & Catalysis , 2004, 346(2-3): 286–296
doi: 10.1002/adsc.200303197
37 Yang G Y, Zhang Q H, Miao H, Tong X L, Xu J. Selective organocatalytic oxygenation of hydrocarbons by dioxygen using anthraquinones and N-hydroxyphthalimide. Organic Letters , 2005, 7(2): 263–266
doi: 10.1021/ol047749p
38 Yang G Y, Ma Y F, Xu J. Biomimetic catalytic system driven by electron transfer for selective oxygenation of hydrocarbon. Journal of the American Chemical Society , 2004, 126(34): 10542–10543
doi: 10.1021/ja047297b
39 Tong X, Xu J, Miao H. Highly efficient and metal-free aerobic hydrocarbons oxidation process by an o-phenanthroline-mediated organocatalytic system. Advanced Synthesis & Catalysis , 2005, 347(15): 1953–1957
doi: 10.1002/adsc.200505183
40 Detoni C, Carvalho N M F, Aranda D A G, Louis B, Antunes O A C. Cyclohexane and toluene oxidation catalyzed by 1,10-phenanthroline Cu(II) complexes. Applied Catalysis A, General , 2009, 365(2): 281–286
doi: 10.1016/j.apcata.2009.06.027
41 Ison A, Xu C, Weakley G K, Richardson D E. Catalytic autoxidations using tris-diimine iron(II) coordination complexes. Journal of Molecular Catalysis A Chemical , 2008, 293(1-2): 1–7
doi: 10.1016/j.molcata.2008.06.010
42 Suzuki Y, Harada E, Nakamaru K, Takeda Y, Sano M, Hashimoto K, Miyake T. Direct oxidation of cycloalkanes with molecular oxygen to dicarboxylic acids using isoamyl nitrite. Journal of Molecular Catalysis A Chemical , 2007, 276(1-2): 1–7
doi: 10.1016/j.molcata.2007.05.038
43 Bonnet D, Ireland T, Fache E, Simonato J. Innovative direct synthesis of adipic acid by air oxidation of cyclohexane. Green Chemistry , 2006, 8(6): 556–559
doi: 10.1039/b600903d
44 Barton D, Lee K W, Mehl W, Ozbalik N, Zhang L. Functionalization of saturated-hydrocarbons. 17. Reactivity of carbon carbon double-bonds. Tetrahedron , 1990, 46(11): 3753–3768
doi: 10.1016/S0040-4020(01)90511-3
45 Sun X L, Jin H. Catalytic oxidation of cyclohexane to cyclohexanone by GoAggII system. Chinese Journal of Synthetic Chemistry , 2008, 16(4): 451–453 (in Chinese)
46 Nayak S, Gamez P, Kozlevcar B, Pevec A, Roubeau O, Dehnen S, Reedijk J. Coordination compounds from the planar tridentate Schiff-base ligand 2-methoxy-6-((quinolin-8-ylimino)methyl)phenol (mqmpH) with several transition metal ions: use of [FeIII(mqmp)(CH3OH)Cl2] in the catalytic oxidation of alkanes and alkenes. Polyhedron , 2010, 29(11): 2291–2296
doi: 10.1016/j.poly.2010.04.035
47 Hitomi Y, Furukawa S, Higuchi M, Shishido T, Tanaka T. Alkane hydroxylation catalyzed by a series of mononuclear nonheme iron complexes containing 4-nitropyridine ligands. Journal of Molecular Catalysis A Chemical , 2008, 288(1-2): 83–86
doi: 10.1016/j.molcata.2008.03.021
48 Mansuy D. A brief history of the contribution of metalloporphyrin models to cytochrome P-450 chemistry and oxidation catalysis. Comptes Rendus. Chimie , 2007, 10(4-5): 392–413
doi: 10.1016/j.crci.2006.11.001
49 Bagchi V, Bandyopadhyay D. The porphyrin complex catalyzed dioxygen activation in presence of solid inorganic phosphates and small quantities of t-BuOOH. Polyhedron , 2008, 27(5): 1387–1392
doi: 10.1016/j.poly.2008.01.003
50 Guo C C, Chu M F, Liu Q, Liu Y, Guo D C, Liu X Q. Effective catalysis of simple metalloporphyrins for cyclohexane oxidation with air in the absence of additives and solvents. Applied Catalysis A, General , 2003, 246(2): 303–309
doi: 10.1016/S0926-860X(03)00061-9
51 Haranaka M, Hara A, Ando W, Akasaka T. Oxygen atom transfer from carbonyl oxide to alkane catalyzed by metalloporphyrin. Tetrahedron Letters , 2009, 50(26): 3585–3587
doi: 10.1016/j.tetlet.2009.03.046
52 Poltowicz J, Pamin K, Haber J. Influence of manganese tetraarylporphyrins substituents on the selectivity of cycloalkanes oxidation with magnesium monoperoxyphthalate. Journal of Molecular Catalysis A Chemical , 2006, 257(1-2): 154–157
doi: 10.1016/j.molcata.2006.04.070
53 Chen Y X, She Y B, Xu J, Li Y. Studies on QSAR of metalloporphyrin catalysts in the oxidation of cyclohexane to adipic acid. Frontiers of Chemical Engineering in China , 2007, 1(2): 155–161
doi: 10.1007/s11705-007-0029-1
54 Hu B Y, Yuan Y J, Xiao J, Guo C C, Liu Q, Tan Z, Li Q H. Rational oxidation of cyclohexane to cyclohexanol, cyclohexanone and adipic acid with air over metalloporphyrin and cobalt salt. Journal of Porphyrins and Phthalocyanines , 2008, 12(1): 27–34
doi: 10.1142/S1088424608000054
55 Carvalho Da Silva D, De Freitas-Silva G, Do Nascimento E, Reboucas J S, Barbeira P J S, Dai De Carvalho M E M, Idemori Y M. Spectral, electrochemical, and catalytic properties of a homologous series of manganese porphyrins as cytochrome P450 model: the effect of the degree of β-bromination. Journal of Inorganic Biochemistry , 2008, 102(10): 1932–1941
doi: 10.1016/j.jinorgbio.2008.07.001
56 Rutkowska-Zbik D, Witko M. Following nature-theoretical studies on factors modulating catalytic activity of porphyrins. Journal of Molecular Catalysis A Chemical , 2006, 258(1-2): 376–380
doi: 10.1016/j.molcata.2006.07.017
57 Ma D S, Hu B C, Lu C X. Selective aerobic oxidation of cyclohexane catalyzed by metallodeuteroporphyrin-IX-dimethylester. Catalysis Communications , 2009, 10(6): 781–783
doi: 10.1016/j.catcom.2008.11.037
58 Hu B C, Zhou W Y, Ma D S, Liu Z L. Metallo-deuteroporphyrins as catalysts for the oxidation of cyclohexane with air in the absence of additives and solvents. Catalysis Communications , 2008, 10(1): 83–85
doi: 10.1016/j.catcom.2008.07.044
59 Zhou W Y, Hu B C, Xu S C, Sun C G, Liu Z L. Catalysis of metallo-deuteroporphyrins for cyclohexane oxidation with air. Chemical Journal of Chinese Universities , 2010, 31(4): 723–726 (in Chinese)
60 Zhou W Y, Hu B C, Liu Z L. Selective oxidation of cyclohexane catalyzed by metallo-deuteroporphyrins in homogeneous solution. Chinese Journal of Applied Chemistry , 2010, 27(4): 424–427 (in Chinese)
61 Zhang R, Yu W Y, Che C M. Catalytic enantioselective oxidation of aromatic hydrocarbons with D4-symmetric chiral ruthenium porphyrin catalysts. Tetrahedron, Asymmetry , 2005, 16(21): 3520–3526
doi: 10.1016/j.tetasy.2005.08.059
62 Monfared H H, Aghapoor V, Ghorbanloo M, Mayer P. Highly selective olefin epoxidation with the bicarbonate activation of hydrogen peroxide in the presence of manganese(III) meso-tetraphenylporphyrin complex: optimization of effective parameters using the Taguchi method. Applied Catalysis A, General , 2010, 372(2): 209–216
doi: 10.1016/j.apcata.2009.10.033
63 Xie J, Wang Y J, Wei Y. Immobilization of manganese tetraphenylporphyrin on Au/SiO2 as new catalyst for cyclohexane oxidation with air. Catalysis Communications , 2009, 11(2): 110–113
doi: 10.1016/j.catcom.2009.09.006
64 Fu B, Yu H C, Huang J W, Zhao P, Liu J, Ji L N. Mn(III) porphyrins immobilized on magnetic polymer nanospheres as biomimetic catalysts hydroxylating cyclohexane with molecular oxygen. Journal of Molecular Catalysis A Chemical , 2009, 298(1-2): 74–80
doi: 10.1016/j.molcata.2008.10.015
65 Cai J H, Huang J W, Zhao P, Ye Y J, Yu H C, Ji L N. Silica-metalloporphyrins hybrid materials: preparation and catalysis to hydroxylate cyclohexane with molecular oxygen. Journal of Sol-Gel Science and Technology , 2009, 50(3): 430–436
doi: 10.1007/s10971-009-1961-y
66 Wang X T, Chu M F, Guo C C. Catalysis of manganeseporphyrin supported on imidazole-modified silica gel for cyclohexane oxidation with air. Chemical Journal of Chinese Universities , 2005, 26(1): 64–67 (in Chinese)
67 Liu C X, Liu Q, Guo C C, Tan Z. Preparation and characterization of novel magnetic nanocomposite-bonded metalloporphyrins as biomimetic nanocatalysts. Journal of Porphyrins and Phthalocyanines , 2010, 14(9): 825–831
doi: 10.1142/S1088424610002665
68 Liu C X, Liu Q, Guo C C. Synthesis and catalytic abilities of silica-coated Fe3O4 nanoparticle bonded metalloporphyrins with different saturation magnetization. Catalysis Letters , 2010, 138(1-2): 96–103
doi: 10.1007/s10562-010-0379-z
69 Machado G S, Castro K, de Lima O J, Nassar E J, Ciuffi K J, Nakagaki S. Aluminosilicate obtained by sol-gel process as support for an anionic iron porphyrin: development of a selective and reusable catalyst for oxidation reactions. Colloids and Surfaces A: Physicochemical and Engineering Aspects , 2009, 349(1-3): 162–169
doi: 10.1016/j.colsurfa.2009.08.013
70 Moghadam M, Mirkhani V, Tangestaninejad S, Mohammdpoor-Baltork I, Kargar H. Silica supported Mn(Br8TPP)Cl and Mn(TPP)Cl as efficient and reusable catalysts for selective hydrocarbon oxidation under various reaction conditions: the effect of substituted bromines on the catalytic activity and reusability. Journal of Molecular Catalysis A Chemical , 2008, 288(1-2): 116–124
doi: 10.1016/j.molcata.2008.03.028
71 Matachowski L, Pamin K, Poltowicz J, Serwicka E M, Jones W, Mokaya R. Oxidation of cyclooctane over metalloporphyrin-exchanged Al, Si-mesoporous molecular sieves of HMS (MMS) type. Applied Catalysis A, General , 2006, 313(1): 106–111
doi: 10.1016/j.apcata.2006.07.016
72 Farzaneh F, Poorkhosravani M, Ghandi M. Utilization of immobilized biomimetic iron complexes within nanoreactors of Al-MCM-41 as cyclohexane oxidation catalyst. Journal of Molecular Catalysis A Chemical , 2009, 308(1-2): 108–113
doi: 10.1016/j.molcata.2009.03.039
73 Raja R, Ratnasamy P. Oxidation of cyclohexane over copper phthalocyanines encapsulated in zeolites. Catalysis Letters , 1997, 48(1-2): 1–10
doi: 10.1023/A:1019054415786
74 Ratnasamy P, Srinivas D. Selective oxidations over zeolite- and mesoporous silica-based catalysts: selected examples. Catalysis Today , 2009, 141(1-2): 3–11
doi: 10.1016/j.cattod.2008.03.009
75 Mirkhani V, Moghadam M, Tangestaninejad S, Kargar H. Mn(Br8TPP)Cl supported on poly styrene-bound imidazole: an efficient and reusable catalyst for biomimetic alkene epoxidation and alkane hydroxylation with sodium periodate under various reaction conditions. Applied Catalysis A, General , 2006, 303(2): 221–229
doi: 10.1016/j.apcata.2006.02.007
76 Huang G, Guo C C, Tang S S. Catalysis of cyclohexane oxidation with air using various chitosan-supported metallotetraphenylporphyrin complexes. Journal of Molecular Catalysis A Chemical , 2007, 261(1): 125–130
doi: 10.1016/j.molcata.2006.08.014
77 Tangestaninejad S, Habibi M H, Mirkhani V, Moghadam M. Mn(Br8TPPS) supported on amberlite IRA-400 as a robust and efficient catalyst for alkene epoxidation and alkane hydroxylation. Molecules (Basel, Switzerland) , 2002, 7(2): 264–270
doi: 10.3390/70200264
78 Tangestaninejad S, Habib M H, Mirkhani V, Moghadam M. Preparation of an insoluble polymer-supported Mn(III) porphyrin and its use as a new alkene epoxidation and alkane hydroxylation catalyst. Journal of Chemical Research: S , 2001, (10): 444–445
79 Castro K A D D, Bail A, Groszewicz P B, Machado G S, Schreiner W H, Wypych F, Nakagaki S. New oxidation catalysts based on iron(III) porphyrins immobilized on Mg-Al layered double hydroxides modified with triethanolamine. Applied Catalysis A, General , 2010, 386(1-2): 51–59
doi: 10.1016/j.apcata.2010.07.031
80 Halma M, Castro K A D D, Prevot V, Forano C, Wypych F, Nakagaki S. Immobilization of anionic iron(III) porphyrins into ordered macroporous layered double hydroxides and investigation of catalytic activity in oxidation reactions. Journal of Molecular Catalysis A Chemical , 2009, 310(1-2): 42–50
doi: 10.1016/j.molcata.2009.05.017
81 Huang G, Liu S Y, Guo Y A, Wang A P, Luo J, Cai C C. Immobilization of manganese tetraphenylporphyrin on boehmite and its catalysis for aerobic oxidation of cyclohexane. Applied Catalysis A, General , 2009, 358(2): 173–179
doi: 10.1016/j.apcata.2009.02.011
82 Guo C C, Xu J B, Long M J, Huang Z M, Liang B X. Study on catalysis of sepiolite-supported metalloporphyrins for cyclohexane oxidation with PhIO. Journal of Hunan University , 1999, 26(3): 18–21 (Natural Sciences Edition) (in Chinese)
83 Lyons J E, Ellis P E, Myers H K. Halogenated metalloporphyrin complexes as catalysts for selective reactions of acyclic alkanes with molecular oxygen. Journal of Catalysis , 1995, 155(1): 59–73
doi: 10.1006/jcat.1995.1188
84 Guo C C, Liu X Q, Liu Q, Liu Y, Chu M F, Lin W Y. First industrial-scale biomimetic oxidation of hydrocarbon with air over metalloporphyrins as cytochrome P-450 monooxygenase model and its mechanistic studies. Journal of Porphyrins and Phthalocyanines , 2009, 13(12): 1250–1254
doi: 10.1142/S1088424609001613
85 Noack H, Georgiev V, Blomberg M, Siegbahn P, Johansson A J. Theoretical insights into heme-catalyzed oxidation of cyclohexane to adipic acid. Inorganic Chemistry , 2011, 50(4): 1194–1202
doi: 10.1021/ic101405u
[1] Ling Tan, Kipkorir Peter, Jing Ren, Baoyang Du, Xiaojie Hao, Yufei Zhao, Yu-Fei Song. Photocatalytic syngas synthesis from CO2 and H2O using ultrafine CeO2-decorated layered double hydroxide nanosheets under visible-light up to 600 nm[J]. Front. Chem. Sci. Eng., 2021, 15(1): 99-108.
[2] Qingzhuo Ni, Hao Cheng, Jianfeng Ma, Yong Kong, Sridhar Komarneni. Efficient degradation of orange II by ZnMn2O4 in a novel photo-chemical catalysis system[J]. Front. Chem. Sci. Eng., 2020, 14(6): 956-966.
[3] Baoyu Liu, Qiaowen Mu, Jiajin Huang, Wei Tan, Jing Xiao. Fabrication of titanosilicate pillared MFI zeolites with tailored catalytic activity[J]. Front. Chem. Sci. Eng., 2020, 14(5): 772-782.
[4] Cyrine Ayed, Wei Huang, Kai A. I. Zhang. Covalent triazine framework with efficient photocatalytic activity in aqueous and solid media[J]. Front. Chem. Sci. Eng., 2020, 14(3): 397-404.
[5] Tingting Zhao, Niamat Ullah, Yajun Hui, Zhenhua Li. Review of plasma-assisted reactions and potential applications for modification of metal–organic frameworks[J]. Front. Chem. Sci. Eng., 2019, 13(3): 444-457.
[6] Kadriye Özlem Hamaloğlu, Ebru Sağ, Çiğdem Kip, Erhan Şenlik, Berna Saraçoğlu Kaya, Ali Tuncel. Magnetic-porous microspheres with synergistic catalytic activity of small-sized gold nanoparticles and titania matrix[J]. Front. Chem. Sci. Eng., 2019, 13(3): 574-585.
[7] Anandarup Goswami, Manoj B. Gawande. Phosphorene: Current status, challenges and opportunities[J]. Front. Chem. Sci. Eng., 2019, 13(2): 296-309.
[8] J. Christopher Whitehead. Plasma-catalysis: Is it just a question of scale?[J]. Front. Chem. Sci. Eng., 2019, 13(2): 264-273.
[9] Andrea P. Reverberi, P.S. Varbanov, M. Vocciante, B. Fabiano. Bismuth oxide-related photocatalysts in green nanotechnology: A critical analysis[J]. Front. Chem. Sci. Eng., 2018, 12(4): 878-892.
[10] Yan Zhang, Jian Xiao, Qiying Lv, Shuai Wang. Self-supported transition metal phosphide based electrodes as high-efficient water splitting cathodes[J]. Front. Chem. Sci. Eng., 2018, 12(3): 494-508.
[11] Dong Yang, Xiaoyan Zou, Yuanyuan Sun, Zhenwei Tong, Zhongyi Jiang. Fabrication of three-dimensional porous La-doped SrTiO3 microspheres with enhanced visible light catalytic activity for Cr(VI) reduction[J]. Front. Chem. Sci. Eng., 2018, 12(3): 440-449.
[12] Dongxu Han, Zhiguo Zhang, Zongbi Bao, Huabin Xing, Qilong Ren. Pd-Ni nanoparticles supported on titanium oxide as effective catalysts for Suzuki-Miyaura coupling reactions[J]. Front. Chem. Sci. Eng., 2018, 12(1): 24-31.
[13] Jian Zhou, Zhicheng Liu, Yangdong Wang, Dejin Kong, Zaiku Xie. Shape selective catalysis in methylation of toluene: Development, challenges and perspectives[J]. Front. Chem. Sci. Eng., 2018, 12(1): 103-112.
[14] Cunyao Li, Wenlong Wang, Li Yan, Yunjie Ding. A mini review on strategies for heterogenization of rhodium-based hydroformylation catalysts[J]. Front. Chem. Sci. Eng., 2018, 12(1): 113-123.
[15] Yinlong Hu,Shuang Zheng,Fumin Zhang. Fabrication of MIL-100(Fe)@SiO2@Fe3O4 core-shell microspheres as a magnetically recyclable solid acidic catalyst for the acetalization of benzaldehyde and glycol[J]. Front. Chem. Sci. Eng., 2016, 10(4): 534-541.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed