Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2013, Vol. 7 Issue (1) : 29-36    https://doi.org/10.1007/s11705-013-1302-0
REVIEW ARTICLE
Influence of short chain ceramides and lipophilic penetration enhancers on the nano-structure of stratum corneum model membranes studied using neutron diffraction
Annett SCHROETER, Tanja ENGELBRECHT, Reinhard H. H. NEUBERT()
Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06120 Halle/Saale, Germany
 Download: PDF(276 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Oriented stratum corneum model lipid membranes were used to study the influence of the short chain ceramides (CER)[NP] and [AP] as well as the impact of the lipophilic penetration enhancer molecules oleic acid (OA) and isopropyl myristate (IPM) on the lipid nanostructure. The influence of the enhancer molecules were studied using specifically deuterated OA and IPM and neutron diffraction. 2H NMR spectroscopy was used to study the impact of the ceramides’ degree of order within the stratum corneum model lipid membranes. It was found that CER[NP] forms two very stable phases with high resistance against temperature increase. Phase B showed unusual hydration behavior as no water uptake of this phase was observed. The 2H NMR spectroscopic measurements showed that CER[NP] based ternary model system had a higher state of lamellar order in comparison to CER[AP] based lipid matrix.

The studies confirmed that the short chain ceramides, particularly CER[NP], have a very high impact on the integrity of the Stratum corneum lipid bilayers. The penetration enhancer OA has not influenced the repeat distance of the model membrane based on CER[AP], and was not able to induce a phase separation in the investigated lipid matrix. However, a disorder and a fluidisation of the model membranes were observed when OA was incorporated. IPM showed the same effect but two phases (assigned as phase A and B) appeared, when IPM was used as penetration enhancer and incorporated into the model membrane. Furthermore, two arrangements of IPM were identified in phase A using deuterated IPM. A model of the nanostructure of the Stratum corneum lipid membranes is presented.

Keywords nano-structure of the stratum corneum      ceramide      penetration enhancer      model membrane      neutron diffraction      2H NMR spectroscopy     
Corresponding Author(s): NEUBERT Reinhard H. H.,Email:reinhard.neubert@pharmazie.uni-halle.de   
Issue Date: 05 March 2013
 Cite this article:   
Annett SCHROETER,Tanja ENGELBRECHT,Reinhard H. H. NEUBERT. Influence of short chain ceramides and lipophilic penetration enhancers on the nano-structure of stratum corneum model membranes studied using neutron diffraction[J]. Front Chem Sci Eng, 2013, 7(1): 29-36.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-013-1302-0
https://academic.hep.com.cn/fcse/EN/Y2013/V7/I1/29
Fig.1  Schematic representation of main diffusion pathways through human skin
Fig.1  Schematic representation of main diffusion pathways through human skin
Fig.2  The principle of the armature reinforcement model
Fig.2  The principle of the armature reinforcement model
Fig.3  Schematic representation of the penetration routes though the SC intercellular lipid matrix and possible ways of interaction with penetration enhancers, modified according to []
Fig.3  Schematic representation of the penetration routes though the SC intercellular lipid matrix and possible ways of interaction with penetration enhancers, modified according to []
Fig.4  Schematic representation of the possible arrangements of IPM in the model SC membranes according to []. PA= palamitic acid, CHOL= cholesterol, ChS= chlosterol sulfate
Fig.4  Schematic representation of the possible arrangements of IPM in the model SC membranes according to []. PA= palamitic acid, CHOL= cholesterol, ChS= chlosterol sulfate
1 Kessner D, Kiselev M A, Dante S, Hauss T, Lersch P, Wartewig S, Neubert R H H. Arrangement of ceramide [EOS] in a stratum corneum lipid model matrix: new aspects revealed by neutron diffraction studies. European Biophysics Journal with Biophysics Letters , 2008, 37(6): 989–999
doi: 10.1007/s00249-008-0328-6
2 Kessner D, Kiselev M A, Hauss T, Dante S, Wartewig S, Neubert R H H. Localisation of partially deuterated cholesterol in quaternary SC lipid model membranes: a neutron diffraction study. European Biophysics Journal with Biophysics Letters , 2008, 37(6): 1051–1057
doi: 10.1007/s00249-008-0265-4
3 Kiselev M A. Conformation of ceramide 6 molecules and chain-flip transitions in the lipid matrix of the outermost layer of mammalian skin, the stratum corneum. Crystallography Reports , 2007, 52(3): 525–528
doi: 10.1134/S1063774507030340
4 Kiselev M A, Ryabova N Y, Balagurov A M, Dante S, Hauss T, Zbytovska J, Wartewig S, Neubert R H H. New insights into the structure and hydration of a stratum corneum lipid model membrane by neutron diffraction. European Biophysics Journal , 2005, 34(8): 1030–1040
doi: 10.1007/s00249-005-0488-6
5 Wegener M, Neubert R H H, Rettig W, Wartewig S. Structure of stratum corneum lipids characterized by FT-Raman spectroscopy and DSC. III. Mixtures of ceramides and cholesterol. Chemistry and Physics of Lipids , 1997, 88(1): 73–82
doi: 10.1016/S0009-3084(97)00050-9
6 Zbytovska J, Vavrova K, Kiselev M A, Lessieur P, Wartewig S, Neubert R H H. The effects of transdermal permeation enhancers on thermotropic phase behaviour of a stratum corneum lipid model. Colloids and Surfaces A: Physicochemical and Engineering Aspects , 2009, 351(1-3): 30–37
doi: 10.1016/j.colsurfa.2009.09.025
7 Schroeter A, Kiselev M A, Hauss T, Dante S, Neubert R H H. Evidence of free fatty acid interdigitation in stratum corneum model membranes based on ceramide [AP] by deuterium labelling. Biochimica et Biophysca Acta. Biomembranes , 2009, 1788(10): 2194
doi: 10.1016/j.bbamem.2009.07.024
8 Engelbrecht T N, Deme B, Dobner B, Neubert R H H. Study of influence of penetration enhancer isopropylmyristate on the nanostructure of stratum corneum lipid model membranes using neutron diffraction and deuterium labelling. Skin Pharmacology and Physiology , 2012, 25(4): 200–207
doi: 10.1159/000338538
9 Engelbrecht T N, Schroeter A, Hauss T, Neubert R H H. Lipophilic penetration enhancers and their impact to the bilayer structure of stratum corneum lipid model membranes: neutron diffraction studies based on the example oleic acid. Biochimica et Biophysica Acta. Biomembranes , 2011, 1808(12): 2798–2806
doi: 10.1016/j.bbamem.2011.08.012
10 Holbrook K A, Odland G F. Regional differences in the thickness (cell layers) of the human stratum corneum: an ultrastructural analysis. Journal of Investigative Dermatology , 1974, 62(4): 415–422
doi: 10.1111/1523-1747.ep12701670
11 Scheuplein R J, Morgan L J. “Bound water” in keratin membranes measured by a microbalance technique. Nature , 1967, 214(5087): 456–458
doi: 10.1038/214456a0
12 Loomans M E, Hannon D P. An electron microscopic study of the effects of subtilisin and detergents on human stratum corneum. Journal of Investigative Dermatology , 1970, 55(2): 101–114
doi: 10.1111/1523-1747.ep12291544
13 Blank I H, Scheuplein R J. Transport into and within skin. British Journal of Dermatology, 1969, S 81: 4–10
14 Mackenzie J C. Ordered structure of the stratum corneum of mammalian skin. Nature , 1969, 222(5196): 882
doi: 10.1038/222881a0
15 Candi E, Schmidt R, Melino G. The cornified envelope: a model of cell death in the skin. Nature Reviews. Molecular Cell Biology , 2005, 6(4): 328–340
doi: 10.1038/nrm1619
16 Elias P M. Epidermal lipids, barrier function, and desquamation. Journal of Investigative Dermatology , 1983, 80(1s Suppl): 44s–49s
doi: 10.1038/jid.1983.12
17 Elias P M. Structure and function of the stratum-corneum permeability barrier. Drug Development Research , 1988, 13(2-3): 97–105
doi: 10.1002/ddr.430130203
18 Elias P M, Friend D S. The permeability barrier in mammalian epidermis. Journal of Cell Biology , 1975, 65(1): 180–191
doi: 10.1083/jcb.65.1.180
19 Elias P M, Goerke J, Friend D S. Mammalian epidermal barrier layer lipids–composition and influence on structure. Journal of Investigative Dermatology , 1977, 69(6): 535–546
doi: 10.1111/1523-1747.ep12687968
20 Landmann L. The epidermal permeability barrier. Anatomy and Embryology , 1988, 178(1): 1–13
doi: 10.1007/BF00305008
21 El Maghraby G M, Barry B W, Williams A C. Liposomes and skin: from drug delivery to model membranes. European Journal of Pharmaceutical Sciences , 2008, 34(4-5): 203–222
doi: 10.1016/j.ejps.2008.05.002
22 Gray G, Yardley H. Different populations of pig epidermal-cells–isolation and lipid composition. Journal of Lipid Research , 1975, 16(6): 441–447
23 Gray G, Yardley H. Lipid compositions of cells isolated from pig, human, and rat epidermis. Journal of Lipid Research , 1975, 16(6): 434–440
24 Wertz P W, van den Bergh B. The physical, chemical and functional properties of lipids in the skin and other biological barriers. Chemistry and Physics of Lipids , 1998, 91(2): 85–96
doi: 10.1016/S0009-3084(97)00108-4
25 Law S L, Wertz P W, Swartzendruber S C A, Squier C A. Regional variation in content, composition and organization of porcine epithelial barrier lipids revealed by thin-layer chromatography and transmission electron microscopy. Archives of Oral Biology , 1995, 40(12): 1085–1091
doi: 10.1016/0003-9969(95)00091-7
26 Di Nardo A, Wertz P, Giannetti A, Seidenari S. Ceramide and cholesterol composition of the skin of patients with atopic dermatitis. Acta Dermato-Venereologica , 1998, 78(1): 27–30
doi: 10.1080/00015559850135788
27 Motta S, Monti M, Sesana S, Mellesi L, Ghidoni R, Caputo R. Abnormality of water barrier function in psoriasis. Role of ceramide fractions. Archives of Dermatology , 1994, 130(4): 452–456
doi: 10.1001/archderm.1994.01690040056007
28 Madison K C, Swartzendruber D C, Wertz P W, Downing D T. Presence of intact intercellular lipid lamellae in the upper layers of the stratum corneum. Journal of Investigative Dermatology , 1987, 88(6): 714–718
doi: 10.1111/1523-1747.ep12470386
29 Swartzendruber D C, Wertz P W, Kitko D J, Madison K C, Downing D T. Molecular models of the intercellular lipid lamellae in mammalian stratum corneum. Journal of Investigative Dermatology , 1989, 92(2): 251–257
doi: 10.1111/1523-1747.ep12276794
30 Forslind B. A domain mosaic model of the skin barrier. Acta Dermato-Venereologica , 1994, 74(1): 1–6
31 Bouwstra J A, Gooris G S, van der Spek J A, Bras W. Structural investigations of human stratum corneum by small-angle X-ray scattering. Journal of Investigative Dermatology , 1991, 97(6): 1005–1012
doi: 10.1111/1523-1747.ep12492217
32 Bouwstra J A, Dubbelaar F E, Gooris G S, Ponec M. The lipid organisation in the skin barrier. Acta Dermato-Venereologica. Supplementum , 2000, 208(Suppl): 23–30
33 White S H, Mirejovsky D, King G I. Structure of lamellar lipid domains and corneocyte envelopes of murine stratum corneum. An X-ray diffraction study. Biochemistry , 1988, 27(10): 3725–3732
doi: 10.1021/bi00410a031
34 Iwai I, Han H, Hollander L D, Svensson S, Ofverstedt L G, Anwar J, Brewer J, Bloksgaard M, Laloeuf A, Nosek D, Masich S, Bagatolli L A, Skoglund U, Norlen L. The human skin barrier is organized as stacked bilayers of fully extended ceramides with cholesterol molecules associated with the ceramide sphingoid moiety. Journal of Investigative Dermatology , 2012, 132(9): 2215–2225
doi: 10.1038/jid.2012.43
35 Trommer H, Neubert R H H. Overcoming the stratum corneum: The modulation of skin penetration–a review. Skin Pharmacology and Physiology , 2006, 19(2): 106–121
doi: 10.1159/000091978
36 Barry B W. Mode of action of penetration enhancers in human skin. Journal of Controlled Release , 1991, 15(3): 237–248
doi: 10.1016/0168-3659(91)90115-T
37 Nagle J F, Tristram-Nagle S. Structure of lipid bilayers. Biochimica et Biophysica Acta , 2000, 1469(3): 159–195
doi: 10.1016/S0304-4157(00)00016-2
38 Seul M, Sammon M J. Reparation of surfactant multilayer films on solid substrates by deposition from organic solution. Thin Solid Films , 1990, 185(2): 287–305
doi: 10.1016/0040-6090(90)90093-S
39 Rowat A C, Kitson N, Thewalt J L. Interactions of oleic acid and model stratum corneum membranes as seen by 2H NMR. International Journal of Pharmaceutics , 2006, 307(2): 225–231
doi: 10.1016/j.ijpharm.2005.10.008
40 Sternin E, Bloom M, Mackay A L. De-pakeing of NMR spectra. Journal of Magnetic Resonance (San Diego, Calif.) , 1983, 55(2): 274–282
41 Davis J H, Jeffrey K R, Bloom M, Valic M I, Higgs T P. Quadrupolar echo deuteron magnetic resonance spectroscopy in ordered hydrocarbon chains. Chemical Physics Letters , 1976, 42(2): 390–394
doi: 10.1016/0009-2614(76)80392-2
42 Davis J H, Jeffrey K R. Temperature dependence of chain disorder in potassium palmitate-water –A deuterium NMR study. Chemistry and Physics of Lipids , 1977, 20(2): 87–104
doi: 10.1016/0009-3084(77)90083-4
43 Takeuchi Y, Yamaoka Y, Fukushima S, Miyawaki K, Taguchi K, Yasukawa H, Kishimoto S, Suzuki M. Skin penetration enhancing action of cis-unsaturated fatty acids with omega-9, and omega-12-chain lengths. Biological & Pharmaceutical Bulletin , 1998, 21(5): 484–491
doi: 10.1248/bpb.21.484
44 Tonegawa A, Michiue A, Masuda T, Ohno T, Matsuura H, Yamada K, Okuda T. Deuterium NMR and Raman spectroscopic studies on conformational behavior of lipophilic chains in the C12E3/decane/water system. Zeitschrift für Naturforschung A–A Journal of Physical Sciences , 2002, 57(6-7): 320–326
45 Engelbrecht T N, Schroeter A, Hauss T, Deme B, Scheidt H A, Huster D, Neubert R H H. The impact of ceramides NP and AP to nanostructure of stratum corneum lipid model membranes. Part I: Neutron diffraction and 2H NMR studies on multilamellar models based on ceramides with symmetric alkyl chain length distribution. Soft Matter , 2012, 8(24): 6599–6607
doi: 10.1039/c2sm25420d
46 Engelbrecht T N, Hauss T, Suss K, Vogel A, Roark M, Feller S E, Neubert R H H, Dobner B. Characterisation of a new ceramide EOS species: Synthesis, investigation of the thermotropicphase behaviour and influence on the bilayer architecture of stratum corneum lipid model membranes. Soft Matter , 2011, 7(19): 8998–9011
doi: 10.1039/c1sm05134b
47 Mitriaikina S, Muller-Goymann C C. Synergetic effects of isopropyl alcohol (IPA) and isopropyl myristate (IPM) on the permeation of betamethasone-17-valerate from semisolid Pharmacopoeia bases. Journal of Drug Delivery Science and Technology , 2007, 17(5): 339–346
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed