Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2013, Vol. 7 Issue (1) : 49-54    https://doi.org/10.1007/s11705-013-1307-8
RESEARCH ARTICLE
Molecular level simulations on multi-component systems —a morphology prediction method
C. SCHMIDT(), J. ULRICH
Center for Engineering Science, Thermal Process Engineering, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
 Download: PDF(326 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The crystal morphology grown from a solution composed of an organic solvent, solute and additive can be predicted reliably by a computational method. Modeling the supersaturated solution as liquid phase is achieved by employing commercial software. The molecular composition of this solution is a required input parameter. The face specific diffusion coefficient of the solid (crystal surface) and liquid (solution) system is determined using the molecular dynamics procedure. The obtained diffusion coefficient is related to the specific face growth rate via the attachment energy of the pure morphology. The significant improvements are achieved in the morphology prediction because the investigation on the face growth rates in a complex growth environment (as multi-component solutions with additives) can be carried out based on the diffusion coefficients.

Keywords crystallization      morphology      molecular dynamics      solution     
Corresponding Author(s): SCHMIDT C.,Email:christiane.schmidt@iw.uni-halle.de   
Issue Date: 05 March 2013
 Cite this article:   
C. SCHMIDT,J. ULRICH. Molecular level simulations on multi-component systems —a morphology prediction method[J]. Front Chem Sci Eng, 2013, 7(1): 49-54.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-013-1307-8
https://academic.hep.com.cn/fcse/EN/Y2013/V7/I1/49
Fig.1  Succinic acid molecule (left) and unit cell (right)
Fig.1  Succinic acid molecule (left) and unit cell (right)
Fig.2  Computed morphologies of vapor grown succinic acid crystals: BFDH (left) and AE morphology (right)
Fig.2  Computed morphologies of vapor grown succinic acid crystals: BFDH (left) and AE morphology (right)
Fig.3  Computed morphologies of succinic acid crystals modeled using the build-in (left) [] and the surface docking (right) methods
Fig.3  Computed morphologies of succinic acid crystals modeled using the build-in (left) [] and the surface docking (right) methods
Fig.4  Computed morphologies of succinic acid crystals modeled using the layer docking method via attachment energy (left) and the diffusion coefficient (right)
Fig.4  Computed morphologies of succinic acid crystals modeled using the layer docking method via attachment energy (left) and the diffusion coefficient (right)
FaceSurface conformation
(020)(011)(100)
Tab.1  Molecular structure of selected surfaces of a succinic acid crystal
Fig.6  Binding energy differences, attachment energy of the pure morphology and modified attachment energy of the succinic acid crystal
Fig.6  Binding energy differences, attachment energy of the pure morphology and modified attachment energy of the succinic acid crystal
Fig.7  Potential energy of the amorphous cell at various simulations stages in the optimization procedure (NVE: N-constant number of particles, V-constant volume, E-constant energy; NPT: N-constant number of particles, P-constant pressure, T-constant temperature)
Fig.7  Potential energy of the amorphous cell at various simulations stages in the optimization procedure (NVE: N-constant number of particles, V-constant volume, E-constant energy; NPT: N-constant number of particles, P-constant pressure, T-constant temperature)
Fig.8  Diffusion coefficients computed for the faces (100) (left) and (011) (right) of a succinic acid crystal
Fig.8  Diffusion coefficients computed for the faces (100) (left) and (011) (right) of a succinic acid crystal
1 Accelrys Software Inc. MaterialsStudio 4.0, San Diego, USA , 2005
2 Bravais A. Etudes Crystallographiques. Paris: Gauthier-Villars, 1866
3 Friedel M G. Etudes Sur la Loi de Bravais. Bulletin de la Société Fran?aise de Minéralogie , 1907, 30: 326–445
4 Donnay J D, Harker D. A new law for crystal morphology extending the law of Bravais. American Mineralogist , 1938, 22: 457–477
5 Hartman P, Bennema P. The attachment energy as a habit controlling factor I–III. Journal of Crystal Growth , 1980, 49: 145–170
6 Nieh?rster S, Ulrich J. Designing crystal morphology by a simple approach. Crystal Research and Technology , 1995, 30(3): 389–395
doi: 10.1002/crat.2170300319
7 Lu J J, Ulrich J. Improved understanding of molecular modelling—the importance of additive incorporation. Journal of Crystal Growth , 2004, 270(1-2): 203–210
doi: 10.1016/j.jcrysgro.2004.06.010
8 Schmidt C, Ulrich J. Predicting crystal morphology grown from solution. Chemical Engineering Technology , 2012, 35: 1009–1012
9 Schmidt C, Ulrich J. Crystal habit prediction—including the liquid as well as the solid side. Crystal Research and Technology , 2012, 47(6): 597–602
doi: 10.1002/crat.201100609
10 Schmidt C. Predicting the crystal morphology grown from aqueous solution. Dissertation for the Doctoral Degree . Halle: Martin Luther University Halle-Wittenberg, 2012
11 Leviel J L, Auvert G, Savariault J M. Hydrogen bond studies. A neutron diffraction study of the structures of succinic acid at 300 K and 70 K. Acta Crystallographica , 1981, B37: 2185–2189
12 Maple J R, Dinur U, Hagler A T. Derivation of force fields for molecular mechanics and dynamics from ab initio energy surfaces. Proceedings of the National Academy of Sciences of the United States of America , 1988, 85(15): 5350–5354
doi: 10.1073/pnas.85.15.5350 pmid:16593959
13 Lemmer S, Ruether F. Habit prediction of succinic acid influenced by two solvents using build-in method. Crystal Research and Technology , 2012, 77: 143–149
[1] Guoting Xia, Yinuo Huang, Fujiang Li, Licheng Wang, Jinbo Pang, Liwei Li, Kai Wang. A thermally flexible and multi-site tactile sensor for remote 3D dynamic sensing imaging[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1039-1051.
[2] Yifei Wang, Shouying Huang, Xinsheng Teng, Hongyu Wang, Jian Wang, Qiao Zhao, Yue Wang, Xinbin Ma. Controllable Fe/HCS catalysts in the Fischer-Tropsch synthesis: Effects of crystallization time[J]. Front. Chem. Sci. Eng., 2020, 14(5): 802-812.
[3] Siming Chen, Yue Wu, Geoffrey W. Stevens, Guoping Hu, Wenshou Sun, Kathryn A. Mumford. Precipitation study of CO2-loaded glycinate solution with the introduction of ethanol as an antisolvent[J]. Front. Chem. Sci. Eng., 2020, 14(3): 415-424.
[4] Peng Luo, Yejun Guan, Hao Xu, Mingyuan He, Peng Wu. Postsynthesis of hierarchical core/shell ZSM-5 as an efficient catalyst in ketalation and acetalization reactions[J]. Front. Chem. Sci. Eng., 2020, 14(2): 258-266.
[5] Bastian Reiprich, Tobias Weissenberger, Wilhelm Schwieger, Alexandra Inayat. Layer-like FAU-type zeolites: A comparative view on different preparation routes[J]. Front. Chem. Sci. Eng., 2020, 14(2): 127-142.
[6] Pascal Brault, William Chamorro-Coral, Sotheara Chuon, Amaël Caillard, Jean-Marc Bauchire, Stève Baranton, Christophe Coutanceau, Erik Neyts. Molecular dynamics simulations of initial Pd and PdO nanocluster growth in a magnetron gas aggregation source[J]. Front. Chem. Sci. Eng., 2019, 13(2): 324-329.
[7] Linchen Yuan, Hao Wu, Yue Zhao, Xiaoyu Qin, Yanni Li. Molecular simulation of the interaction mechanism between CodY protein and DNA in Lactococcus lactis[J]. Front. Chem. Sci. Eng., 2019, 13(1): 133-139.
[8] Xiaobin Jiang, Linghan Tuo, Dapeng Lu, Baohong Hou, Wei Chen, Gaohong He. Progress in membrane distillation crystallization: Process models, crystallization control and innovative applications[J]. Front. Chem. Sci. Eng., 2017, 11(4): 647-662.
[9] Tianjie Liu, Hao Fan, Yanxia Xu, Xingfu Song, Jianguo Yu. Effects of metal ions on the morphology of calcium sulfate hemihydrate whiskers by hydrothermal method[J]. Front. Chem. Sci. Eng., 2017, 11(4): 545-553.
[10] Gordon L. Amidon, Yasuhiro Tsume. Oral product input to the GI tract: GIS an oral product performance technology[J]. Front. Chem. Sci. Eng., 2017, 11(4): 516-520.
[11] Yang Zhou, Phillip Choi. Molecular dynamics study of water diffusion in an amphiphilic block copolymer with large difference in the blocks’ glass transition temperatures[J]. Front. Chem. Sci. Eng., 2017, 11(3): 440-447.
[12] Fatima Mameri, Ouahiba Koutchoukali, Mohamed Bouhelassa, Anne Hartwig, Leila Nemdili, Joachim Ulrich. The feasibility of coating by cooling crystallization on ibuprofen naked tablets[J]. Front. Chem. Sci. Eng., 2017, 11(2): 211-219.
[13] Wen Zhang,Jack W. Szostak,Zhen Huang. Nucleic acid crystallization and X-ray crystallography facilitated by single selenium atom[J]. Front. Chem. Sci. Eng., 2016, 10(2): 196-202.
[14] Fufeng LIU,Wenjie DU,Yan SUN,Jie ZHENG,Xiaoyan DONG. Atomistic characterization of binding modes and affinity of peptide inhibitors to amyloid-β protein[J]. Front. Chem. Sci. Eng., 2014, 8(4): 433-444.
[15] Ahmed ABOUZEID,Sandra PETERSEN,Joachim ULRICH. Utilizing melt crystallization fundamentals in the development of a new tabletting technology[J]. Front. Chem. Sci. Eng., 2014, 8(3): 346-352.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed