Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2013, Vol. 7 Issue (3) : 249-261    https://doi.org/10.1007/s11705-013-1333-6
RESEARCH ARTICLE
Reduction of CeO2 in composites with transition metal complex oxides under hydrogen containing atmosphere and its correlation with catalytic activity
Elena Yu. KONYSHEVA1,2()
1. School of Chemistry, University of St Andrews, KY169ST, St Andrews, Fife, UK; 2. Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
 Download: PDF(592 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Reduction behavior of pure and doped CeO2, the multi-phase La0.6Sr0.4CoO3?xCeO2, La0.8Sr0.2MnO3 ?xCeO2, and La0.95Ni0.6Fe0.4O3?xCeO2 composites, was studied under hydrogen containing atmosphere to address issues related to the improvement of electrochemical and catalytic performance of electrodes in fuel cells. The enhanced reduction of cerium oxide was observed initially at 800°C in all composites in spite of the presence of highly reducible transition metal cations that could lead to the increase in surface concentration of oxygen vacancies and generation of the electron enriched surface. Due to continuous reduction of cerium oxide in La0.6Sr0.4CoO3?xCeO2 and La0.8Sr0.2MnO3?xCeO2 (up to 10 h) composites the redox activity of the Ce4+/Ce3+ pair could be suppressed and additional measures are required for reversible spontaneous regeneration of Ce4+. After 3 h exposure to H2-Ar at 800°C the reduction of cerium oxides and perovskite phases in La0.95Ni0.6Fe0.4O3?xCeO2 composites was diminished. The extent of cerium oxide involvement in the reduction process varies with time, and depends on its initial deviation from oxygen stoichiometry (that results in the larger lattice parameter and the longer pathway for O2- transport through the fluorite lattice), chemical origin of transition metal cations in the perovskite, and phase diversity in multi-phase composites.

Keywords reduction of cerium oxide      composites      perovskites      catalyst under hydrogen containing atmosphere     
Corresponding Author(s): KONYSHEVA Elena Yu.,Email:elena.konysheva@googlemail.com, elena.konysheva@xjtlu.edu.cn   
Issue Date: 05 September 2013
 Cite this article:   
Elena Yu. KONYSHEVA. Reduction of CeO2 in composites with transition metal complex oxides under hydrogen containing atmosphere and its correlation with catalytic activity[J]. Front Chem Sci Eng, 2013, 7(3): 249-261.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-013-1333-6
https://academic.hep.com.cn/fcse/EN/Y2013/V7/I3/249
Fig.1  (a) Relative weight change of single phase compounds with fluorite structure at 800°C under H-Ar atmosphere and (b) experimental data from Fig. 1(a) are plotted as “” “time”, where α is the conversion fraction. 1. CeO; 2. CeLaSrCoO
Fig.2  XRD patterns of CeO initially and after exposure to H-Ar atmosphere at 800°C for 10 h
CompositionAtomic concentration/at % a)f[Ce4+]/f[Ce3+]atomic ratio b)
CeSrO
CeO221.7-78.34.5
Ce0.905La0.028Sr0.019Co0.048O2-δ9.81.189.14.5
Ce0.808La0.058Sr0.038Co0.096O2-δ24.07.568.513.2
Tab.1  Surface atomic composition derived from XPS for pure and multi-cation doped cerium oxides with fluorite structure calcined at 1350°C for 5 h in air
Fig.3  Curve-fitted Ce3 core level spectrum of CeLaSrCoO
Fig.4  Mass change and thermo-effects observed during reduction of (a) LaSrCoO (LSC) perovskite, LSCC25 and LSCC57 composites; and (b) LNFC02 and LNFC57 composites. TEf1 and TEf2 stand for the 1 and 2 exothermic effects, respectively
Fig.5  (a) –(c) Reduction of the LSCC, LSMC, and LNFC composites during exposure to H-Ar at 800°C. The borders between stages I, II, and III are marked on figures conditionally. TGA data are presented after the subtraction of the corrections; (d) –(f) XPD patterns of LSCC25, LSMC25, and LNFC25 composites initially and after reduction under H-Ar atmosphere at 800°C
Fig.6  Compositional dependences of the weight loss in the LSCC, LSMC, and LNFC series after (a,b) 0.4 h, (c) 1.2 h, (d) 3 h, (e) 5.5 h, and (f) 8 h. Comparison of (1) the expected weight loss if only transition metal cations from perovskites contribute to the reduction of composites (data are marked as dot lines), (2) the expected weight loss due to the simultaneous reduction of transition metal cations in perovskites and Ce cations in CeO in proportions corresponding to their fractions in the composites (data are marked as dash-dot lines), and (3) the experimental data obtained in TGA experiments under H-Ar atmosphere at 800°C (data are marked as solid lines with symbols). Error bars are within the symbols
Fig.7  Room temperature lattice parameter of the modified cerium oxides with fluorite structure in the LSCC, LSMC, and LNFC composites fabricated under air at 1350°C. Data for the LNFC composites are presented for both main and minor fraction of modified cerium oxide
1 Voorhoeve R J H, Remeika J P, Freeland P E, Matthias B T. Rare-earth oxides of manganese and cobalt rival platinum for the treatment of carbon monoxide in auto exhaust. Science , 1972, 177(4046): 353–354
doi: 10.1126/science.177.4046.353
2 Trovarelli A. Catalytic properties of ceria and CeO2-containing materials. Catalysis Reviews. Science and Engineering , 1996, 38(4): 439–520
doi: 10.1080/01614949608006464
3 Lombardo E A, Ulla M A. Perovskite oxides in catalysis: past, present and future. Research on Chemical Intermediates , 1998, 24(5): 581–592
doi: 10.1163/156856798X00104
4 Sin A, Kopnin E, Dubitsky Y, Zaopo A, Aricò A S, Gullo L R, La Rosa D, Antonucci V J. Stabilisation of composite LSFCO-CGO based anodes for methane oxidation in solid oxide fuel cells. Journal of Power Sources , 2005, 145(1): 68–73
doi: 10.1016/j.jpowsour.2004.12.040
5 Ferri D. NO reduction by H2 over perovskite-like mixed oxides. Catal. B: Environmental , 1998, 16(4): 339–345
doi: 10.1016/S0926-3373(97)00090-8
6 Falcon H, Carbonio R E, Fierro J L G. Correlation of Oxidation States in LaFexNi1-xO3+δ oxides with catalytic activity for H2O2 decomposition. Catalysis , 2001, 203(2): 264–272
doi: 10.1006/jcat.2001.3351
7 Petunchi J O, Nicastro J L, Lombardo E A J. Ethylene hydrogenation over LaCoO3 perovskite. Journal of the Chemical Society. Chemical Communications , 1980, 1980(11): 467–468
doi: 10.1039/c39800000467
8 Cheng D G, Chong M, Chen F, Zhan X. XPS Characterization of CeO2 catalyst for hydrogenation of benzoic acid to benzaldehyde. Catalysis Letters , 2008, 120(1): 82–85
doi: 10.1007/s10562-007-9252-0
9 Gross M D, Vohs J M, Gorte R J. A strategy for achieving high performance with SOFC ceramic anodes. Electrochemical and Solid-State Letters , 2007, 10(4): B65–B69
doi: 10.1149/1.2432942
10 Gross M D, Vohs J M, Gorte R J. An examination of SOFC anode functional layers based on ceria in YSZ. Journal of the Electrochemical Society , 2007, 154(7): B694–B699
doi: 10.1149/1.2736647
11 Wang S, Kato T, Nagata S, Honda T, Kaneko T, Iwashita N, Dokiya M. Ni/Ceria cermet as anode of reduced-temperature solid oxide fuel cells. Journal of the Electrochemical Society , 2002, 149(7): A927–A933
doi: 10.1149/1.1483867
12 Huang Y H, Dass R I, Xing Z L, Goodenough J B. Double perovskites as anode materials for solid-oxide fuel cells. Science , 2006, 312(5771): 254–257
doi: 10.1126/science.1125877
13 Tao S W, Irvine J T S. A redox-stable efficient anode for solid-oxide fuel cells. Nature Materials , 2003, 2(5): 320–323
doi: 10.1038/nmat871
14 Kim G, Corre G, Irvine J T S, Vohs J M, Gorte R J. Engineering composite oxide SOFC anodes for efficient oxidation of methane. Electrochemical and Solid-State Letters , 2008, 11(2): B16–B19
doi: 10.1149/1.2817809
15 Cordatos H, Gorte R J C O. NO, and H2 adsorption on ceria-supported Pd. Catalysis , 1996, 159(1): 112–118
doi: 10.1006/jcat.1996.0070
16 Nakamura T, Petzow G, Gauckler L J. Stability of the perovskite phase LaBO3 (B= V, Cr, Mn, Fe, Co, Ni) in reducing atmosphere I. Experimental results. Materials Research Bulletin , 1979, 14(5): 649–659
doi: 10.1016/0025-5408(79)90048-5
17 Radovic M, Speakman S A, Allard L F, Payzant E A, Lara-Curzio E, Kriven W M, Lloyd J, Fegely L, Orlovskaya N. Thermal, mechanical and phase stability of LaCoO3 in reducing and oxidizing environments. Journal of Power Sources , 2008, 184(1): 77–83
doi: 10.1016/j.jpowsour.2008.05.063
18 Konysheva E, Irvine J T S. Evolution of conductivity, structure and thermochemical stability of lanthanum manganese iron nickelate perovskites. Journal of Materials Chemistry , 2008, 18(42): 5147–5154
doi: 10.1039/b807145d
19 Konysheva E, Irvine J T S. Thermochemical and structural stability of A- and B-site-substituted perovskites in hydrogen-containing atmosphere. Chemistry of Materials , 2009, 21(8): 1514–1523
doi: 10.1021/cm802996p
20 Konysheva E, Suard E, Irvine J T S. Effect of oxygen non stoichiometry and oxidation state of transition elements on high-temperature phase transition in a-site deficient La0.95Ni0.6Fe0.4O3-δ perovskite. Chemistry of Materials , 2009, 21(21): 5307–5318
doi: 10.1021/cm902443n
21 Konysheva E, Irvine J T S. In situ high-temperature neutron diffraction study of A-site deficient perovskites with transition metals on the B-sublattice and structure-conductivity correlation. Chemistry of Materials , 2011, 23(7): 1841–1850
doi: 10.1021/cm103486z
22 Teraoka Y, Nobunaga T, Okamoto K, Miura N, Yamazoe N. Influence of constituent metal cations in substituted LaCoO3 on mixed conductivity and oxygen permeability. Solid State Ionics , 1991, 48(3-4): 207–212
doi: 10.1016/0167-2738(91)90034-9
23 Ishigaki T, Yamauchi S, Mizusaki J, Fueki K, Tamura H. Tracer diffusion coefficient of oxide ions in LaCoO3 single crystal. Journal of Solid State Chemistry , 1984, 54(1): 100–107
doi: 10.1016/0022-4596(84)90136-1
24 Ishigaki T, Yamauchi S, Kishio K, Mizusaki J, Fueki K. Diffusion of oxide ion vacancies in perovskite-type oxides. Journal of Solid State Chemistry , 1988, 73(1): 179–187
doi: 10.1016/0022-4596(88)90067-9
25 Hayward M A, Cussen E J, Claridge J B, Bieringer M, Rosseinsky M J, Kiely C J, Blundell S J, Marshall I M, Pratt F L. The hydride anion in an extended transition metal oxide array: LaSrCoO3H0.7. Science , 2002, 295(5561): 1882–1884
doi: 10.1126/science.1068321
26 Bridges C A, Darling G R, Hayward M A, Rosseinsky M J. Electronic structure, magnetic ordering, and formation pathway of the transition metal oxide hydride LaSrCoO3H0.7. Journal of the American Chemical Society , 2005, 127(16): 5996–6011
doi: 10.1021/ja042683e
27 Rietveld H M. A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography , 1969, 2(2): 65–71
doi: 10.1107/S0021889869006558
28 Sayle T X T, Parker S C, Catlow C R A. Surface oxygen vacancy formation on CeO2 and its role in the oxidation of carbon monoxide. Journal of the Chemical Society. Chemical Communications , 1992, 1992(14): 977–978
doi: 10.1039/c39920000977
29 Yang Z, Yu X, Lu Z, Li S, Hermansson K. Oxygen vacancy pairs on CeO2 (110): A DFT+U study. Physics Letters. [Part A] , 2009, 373(31): 2786–2792
doi: 10.1016/j.physleta.2009.05.055
30 Tuller H L, Nowick A S. Small polaron electron transport in reduced CeO2 single crystals. Journal of Physics and Chemistry of Solids , 1977, 38(8): 859–867
doi: 10.1016/0022-3697(77)90124-X
31 Tuller H L, Nowick A S. Defect structure and electrical properties of nonstoichiometric CeO2 single crystals. Journal of the Electrochemical Society , 1979, 126(2): 209–217
doi: 10.1149/1.2129007
32 Blumental R N, Sharma R K. Electronic conductivity in nonstoichiometric cerium dioxide. Journal of Solid State Chemistry , 1975, 13(4): 360–364
doi: 10.1016/0022-4596(75)90152-8
33 Hull S, Norberg S T, Ahmed I, Eriksson S G, Marrocchelli D, Madden P A. Oxygen vacancy ordering within anion-deficient ceria. Journal of Solid State Chemistry , 2009, 182(10): 2815–2821
doi: 10.1016/j.jssc.2009.07.044
34 Tsch?pe A, Sommer E, Birringer R. Grain size-dependent electrical conductivity of polycrystalline cerium oxide. I. Experiments. Solid State Ionics , 2001, 139(3-4): 255–265
doi: 10.1016/S0167-2738(01)00678-6
35 Tsch?pe A, Birringer R. Grain size dependence of electrical conductivity in polycrystalline cerium oxide. Journal of Electroceramics , 2001, 7(3): 169–177
doi: 10.1023/A:1014483028210
36 Gao P, Kang Z, Fu W, Wang W, Bai X, Wang E. Electrically driven redox process in cerium oxides. Journal of the American Chemical Society , 2010, 132(12): 4197–4201
doi: 10.1021/ja9086616
37 Laachir A, Perrichon V, Badri A, Lamotte J, Catherine E, Lavalley J C, Fallah J E, Hilaire L, Normand F L, Quéméré E, Sauvion G N, Touret O. Reduction of CeO2 by hydrogen. Magnetic susceptibility and fourier-transform infrared, ultraviolet and X-ray photoelectron spectroscopy measurements. Journal of the Chemical Society, Faraday Transactions , 1991, 87(10): 1601–1609
doi: 10.1039/ft9918701601
38 Konysheva E, Irvine J T S. Transport properties of multi-cations doped cerium oxide. Solid State Ionics , 2011, 184(1): 27–30
doi: 10.1016/j.ssi.2010.09.032
39 ?atava V, ?kvara F. Mechanism and kinetics of the decomposition of solids by a thermogravimetric method. Journal of the American Ceramic Society , 1969, 52(11): 591–595
doi: 10.1111/j.1151-2916.1969.tb15846.x
40 Khawam A, Flanagan D R. Solid-state kinetic models: Basics and mathematical fundamentals. Journal of Physical Chemistry B , 2006, 110(35): 17315–17328
doi: 10.1021/jp062746a
41 Yamamura H, Katoh E, Ichikawa M, Kakinuma K, Mori T, Haneda H. Multiple doping effect on the electrical conductivity in the (Ce1-x-yLaxMy)O2-δ (M= Ca, Sr) system. Electrochemistry , 2000, 68(6): 455–459
42 Zuev A, Singheiser L, Hilpert K. Oxygen vacancy formation and defect structure of Cu-doped lanthanum chromite LaCr0.79Cu0.05Al0.16O3-δ. Solid State Ionics , 2005, 176(3-4): 417–421
doi: 10.1016/j.ssi.2004.08.003
43 Petrov A N, Zuev A Yu, Vylkov A I, Tsvetkov D S. Defect structure and charge transfer in undoped and doped lanthanum cobaltites. Journal of Materials Science , 2007, 42(6): 1909–1914
doi: 10.1007/s10853-006-0346-7
44 Zhang F, Wang P, Koberstein J, Khalid S, Chan S W. Cerium oxidation state in ceria nanoparticles studied with X-ray photoelectron spectroscopy and absorption near edge spectroscopy. Surface Science , 2004, 563(1): 74–82
doi: 10.1016/j.susc.2004.05.138
45 Konysheva E Yu, Francis S M. Identification of surface composition and chemical states in composites comprised of phases with fluorite and perovskite structures by X-ray photoelectron spectroscopy. Applied Surface Science , 2013, 268(1): 278–287
doi: 10.1016/j.apsusc.2012.12.079
46 Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica. Section A, Foundations of Crystallography , 1976, 32(5): 751–767
doi: 10.1107/S0567739476001551
47 Konysheva E Yu, Francis S M, Irvine J T S, Rolle A, Vannier R N. Red-ox behaviour in the La0.6Sr0.4CoO3±δ-CeO2 system. Journal of Materials Chemistry , 2011, 21(39): 15511–15520
doi: 10.1039/c1jm12582f
48 JCPDS, International Centre for Diffraction Data, file No. 34-0394
49 Konysheva E, Francis S M, Irvine J T S. Crystal structure, oxygen nonstoichiometry, and conductivity of mixed ionic-electronic conducting perovskite composites with CeO2. Journal of the Electrochemical Society , 2010, 157(1): B159–B165
doi: 10.1149/1.3256117
50 Konysheva E, Irvine J T S, Besmehn A. Crystal structure, thermochemical stability, electrical and magnetic properties of the two-phase composites in the La0.8Sr0.2MnO3±δ-CeO2 system. Solid State Ionics , 2009, 180(11-13): 778–783
doi: 10.1016/j.ssi.2008.12.027
51 Poulsen F W. Defect chemistry modelling of oxygen-stoichiometry, vacancy concentrations, and conductivity of (La1-xSrx)MnO3±δ. Solid State Ionics , 2000, 129(1-4): 145–162
doi: 10.1016/S0167-2738(99)00322-7
52 Konysheva E, Irvine J T S. The La0.95Ni0.6Fe0.4O3-CeO2 system: phase equilibria, crystal structure of components and transport properties. Journal of Solid State Chemistry , 2011, 184(6): 1499–1504
doi: 10.1016/j.jssc.2011.04.027
53 Pound B G. The characterization of doped CeO2 electrodes in solid oxide fuel cells. Solid State Ionics , 1992, 52(1): 183–188
doi: 10.1016/0167-2738(92)90104-W
54 Belov B F, Goroh A V, Demchuk V P, Dorschenko N A, Somojlenko Z A. Inorganic Materials , 1983, 19(3): 231–234
55 Robbins M, Wertheim G K, Menth A, Sherwood R C. Preparation and properties of polycrystalline cerium orthoferrite (CeFeO3). Journal of Physics and Chemistry of Solids , 1969, 30(7): 1823–1825
doi: 10.1016/0022-3697(69)90250-9
[1] Mostafa R. Shirdar, Nasim Farajpour, Reza Shahbazian-Yassar, Tolou Shokuhfar. Nanocomposite materials in orthopedic applications[J]. Front. Chem. Sci. Eng., 2019, 13(1): 1-13.
[2] Walter Kaminsky. Polyolefin-nanocomposites with special properties by in-situ polymerization[J]. Front. Chem. Sci. Eng., 2018, 12(3): 555-563.
[3] Giorgia De Guido, Matteo Compagnoni, Laura A. Pellegrini, Ilenia Rossetti. Mature versus emerging technologies for CO2 capture in power plants: Key open issues in post-combustion amine scrubbing and in chemical looping combustion[J]. Front. Chem. Sci. Eng., 2018, 12(2): 315-325.
[4] Ehsan Salehi, Fereshteh Soroush, Maryam Momeni, Aboulfazl Barati, Ali Khakpour. Chitosan/polyethylene glycol impregnated activated carbons: Synthesis, characterization and adsorption performance[J]. Front. Chem. Sci. Eng., 2017, 11(4): 575-585.
[5] Huining HE, Junxiao YE, Jianyong SHENG, Jianxin WANG, Yongzhuo HUANG, Guanyi CHEN, Jingkang WANG, Victor C YANG. Overcoming oral insulin delivery barriers: application of cell penetrating peptide and silica-based nanoporous composites[J]. Front Chem Sci Eng, 2013, 7(1): 9-19.
[6] ZENG Lingke, LIU Yanchun, LIU Ping′an, WANG Hui, SHUI Anze, DUAN Bilin. Preparation and catalytic performance of La0.8Sr0.2CoO3 supported on the mullite fiber ceramic[J]. Front. Chem. Sci. Eng., 2007, 1(4): 372-376.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed