Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2013, Vol. 7 Issue (3) : 329-337    https://doi.org/10.1007/s11705-013-1339-0
RESEARCH ARTICLE
Preparation of manganese (III) acetylacetonate nanoparticles via an environmentally benign route
M. S. Shalaby(), H. Abdallah
National Research Center, El Buhouth St., Dokki, Cairo, Egypt
 Download: PDF(325 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

With the hope of overcoming the generation of hazardous materials to human health and environment, serious and great endeavor have been made in catalyst fabrication using green chemistry technology. In this paper, the manganese (III) acetylacetonate nanoparticles with diameters of about 146 nm were prepared by a simple and environmentally benign route based on hydrolysis of KMnO4 followed by reaction with acetylacetone in rapid stirring rate or ultrasonication. The as-prepared samples were characterized by X-ray diffraction, energy dispersive X-ray fluorescence (EDIX), Fourier transfer infrared spectroscopy and scanning electron microscope. Various parameters were investigated, and the pure and stable crystals of manganese (III) acetylacetonate could be obtained in 98% conversion at a molar ratio 7∶1 of acetylacetone to KMnO4 and 75°C after 60 min. We further proposed a mathematical model, and the predicted results from model were in good agreement with experimental results.

Keywords green chemistry      manganese (III) acetylacetonate      reaction conversion      Mathematical model     
Corresponding Author(s): Shalaby M. S.,Email:marwashalaby_4@yahoo.com   
Issue Date: 05 September 2013
 Cite this article:   
M. S. Shalaby,H. Abdallah. Preparation of manganese (III) acetylacetonate nanoparticles via an environmentally benign route[J]. Front Chem Sci Eng, 2013, 7(3): 329-337.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-013-1339-0
https://academic.hep.com.cn/fcse/EN/Y2013/V7/I3/329
1 Chaudhuri M K, Dehury S K, Dhar S S, Bora U, Choudary M C, Mannepalli L K. US patent , 7282573 B2, 2007
2 Moser W R. Advanced Catalysts and Nanostructured Materials: Modern Synthetic Methods. California: San Diego Academic Press, 1996, 27–42
3 Kenvin J C, White M G, Mitchell M B. Preparation and characterization of supported mononuclear metal complexes as model catalysts. Langmuir , 1991, 7(6): 1198–1205
doi: 10.1021/la00054a030
4 Baltes M, Van Der Voort P, Weckhuysen B M, Ramachandra R R, Catana G, Schoonheydt R A, Vansant E F. Synthesis and characterization of alumina-supported vanadium oxide catalysts prepared by the molecular designed dispersion of VO(acac)2 complexes. Physical Chemistry Chemical Physics , 1992, 2(11): 2673–2680
doi: 10.1039/b002141p
5 Capek L, Adam J, Grygar T, Bulanek R, Vradman L, Kosova-Kucerova G, Cicmanec P, Knotek P. Oxidative dehydrogenation of ethane over vanadium supported on mesoporous materials of M41S family. Applied Catalysis A , 2008, 342(1-2): 99–106
doi: 10.1016/j.apcata.2008.03.003
6 Sleightholme A E S, Shinklea A A, Liu Q, Li Y. Non-aqueous manganese acetylacetonate electrolyte for redox flow batteries. Journal of Power Sources , 2011, 196(13): 5742–5745
doi: 10.1016/j.jpowsour.2011.02.020
7 Park Y J, Kim J G, Kim M K, Chung H T, Kim H G. Preparation of LiMn O thin films by a sol-gel method. Solid State Ionics , 2000, 130(3-4): 203–214
doi: 10.1016/S0167-2738(00)00551-8
8 Pereira C, Rosa Silva A, Paula Carvalho A, Pires J, Freire C. Vanadyl acetylacetonate anchored onto amine-functionalised clays and catalytic activity in the epoxidation of geraniol. Journal of Molecular Catalysis A Chemical , 2008, 283(1-2): 5–14
doi: 10.1016/j.molcata.2007.11.034
9 Pereira C, Patricio S, Rosa Silva A, Magalhaes A L, Paula Carvalho A, Pires J, Cristina F. Copper acetylacetonate anchored onto amine-functionalisedclays. Journal of Colloid and Interface Science , 2007, 316(2): 570–579
doi: 10.1016/j.jcis.2007.07.053
10 Fujihara S. Sol-gel processing of fluoride and oxy fluoride materials. Handbook of Sol-Gel Science and Technology . Volume I: Sol-Gel Processing. Boston: Kluwer Academic Publishers, 2005, 219
11 Cernea M, Monnereau O, Llewellyn P, Tortet L, Galassi C. Sol-gel synthesis and characterization of Ce doped-BaTiO3. Journal of the European Ceramic Society , 2006, 26(15): 3241–3246
doi: 10.1016/j.jeurceramsoc.2005.09.039
12 Tangwiwat S, Milne S J. Barium titanate sols prepared by a diol-based sol-gel route. Journal of Non-Crystalline Solids , 2005, 351(12-13): 976–980
doi: 10.1016/j.jnoncrysol.2004.12.008
13 Morrison E D. US Patent , 5314980, 1994
14 Legrow G E, Kalinowski R E. US Patent , 4359566, 1982
15 Bouwman E, van Gorkum R. A study of new manganese complexes aspotential driers for alkyd paints. Journal of Coatings Technology and Research , 2007, 4(4): 491–503
doi: 10.1007/s11998-007-9041-0
16 Cohen L J, Bauer J L, Davis W E. Evolving and revolutionary technologies for the new millennium. Society for the Advancement of Material and Process Engineering , 1999, 44: 23–27
17 Glidewell C. Metal Acetylacetonate Complexes: Preparation and Characterization. In: Woollins J ed; Inorganic Experiments , 2nd ed. Weinheim: Wiley-VCH, 2003, Exp 3.16
18 Dakhel A A. Characteristics of tris (2,4-pentanedionate manganese (III) thin films. Journal of Non-Crystalline Solids , 2005, 351(40-42): 3204–3208
doi: 10.1016/j.jnoncrysol.2005.08.022
19 Mahdavian M, Attar M M. Electrochemical behavior of some transition metal acetylacetonate complexes as corrosion inhibitors for mild steel. Corrosion Science , 2009, 51(2): 409–414
doi: 10.1016/j.corsci.2008.11.010
20 Shaaban A F, Mostafa H A, Khedr M A E M, Mohamed M S. khedr M A, Saied M. Process engineering development for the manufacturing of manganese octoate on a pilot plant scale. Chemical Engineering Research & Design , 2012, 90(5): 643–650
doi: 10.1016/j.cherd.2011.09.007
21 Masayuki O. US patent , 6376719, 2002
22 Henari F Z, Mohamed A Y A. Nonlinear refractive index measurement of tris(acetyl acetonato manganese(III) solution. Optics & Laser Technology , 2008, 40(4): 602–606
doi: 10.1016/j.optlastec.2007.09.005
23 Suzana M, Goran N S. Physico- chemical characterization of mixed-ligand complexes of Mn (III) based on the acetylacetonate and maleic acid and its hydroxyl amine derivate. APTEFF , 2005, 36: 1–266
24 Elnashaie S S M, Garhyan P. Conservation equations and modeling of chemical and biochemical processes. New York: Auburn University, 2003, 100–160
25 Wyczesany A. Chemical equilibrium constants in esterification of acetic acid with C1-C5 alcohols in liquid phase. Chemical and Process Engineering , 2009, 30: 243–265
[1] Petro Kapustenko, Jiří J. Klemeš, Olga Arsenyeva, Olexandr Matsegora, Oleksandr Vasilenko. Accounting for local features of fouling formation on PHE heat transfer surface[J]. Front. Chem. Sci. Eng., 2018, 12(4): 619-629.
[2] Zhikai LI, Zhangfeng QIN, Yagang ZHANG, Zhiwei WU, Hui WANG, Shuna LI, Mei DONG, Weibin FAN, Jianguo WANG. A logic-based controller for the mitigation of ventilation air methane in a catalytic flow reversal reactor[J]. Front Chem Sci Eng, 2013, 7(3): 347-356.
[3] Weihan WANG, Jing Lü, Li ZHANG, Zhenhua LI. Real atom economy and its application for evaluation the green degree of a process[J]. Front Chem Sci Eng, 2011, 5(3): 349-354.
[4] Zhen CHEN, Haitao ZHANG, Weiyong YING, Dingye FANG. Study on direct alcohol/ether fuel synthesis process in bubble column slurry reactor[J]. Front Chem Eng Chin, 2010, 4(4): 461-471.
[5] Tianlong DENG, Baojun ZHANG, Dongchan LI, Yafei GUO. Simulation studies on metastable phase equilibria in the aqueous ternary systems (NaCl-MgCl2-H2O) and (KCl-MgCl2-H2O) at 308.15 K[J]. Front Chem Eng Chin, 2009, 3(2): 172-175.
[6] KONG Xiaoying, WU Chuangzhi, YUAN Zhenhong, MA Longlong, CHANG Jie, LÜ Pengmei. Modeling and simulation of biomass air-steam gasification in a fluidized bed[J]. Front. Chem. Sci. Eng., 2008, 2(2): 209-213.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed