|
|
A logic-based controller for the mitigation of ventilation air methane in a catalytic flow reversal reactor |
Zhikai LI1,2, Zhangfeng QIN1( ), Yagang ZHANG1,2, Zhiwei WU1, Hui WANG1, Shuna LI1,2, Mei DONG1, Weibin FAN1, Jianguo WANG1( ) |
1. State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China; 2. University of the Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract The control system of a catalytic flow reversal reactor (CFRR) for the mitigation of ventilation air methane was investigated. A one-dimensional heterogeneous model with a logic-based controller was applied to simulate the CFRR. The simulation results indicated that the controller developed in this work performs well under normal conditions. Air dilution and auxiliary methane injection are effective to avoid the catalyst overheating and reaction extinction caused by prolonged rich and lean feed conditions, respectively. In contrast, the reactor is prone to lose control by adjusting the switching time solely. Air dilution exhibits the effects of two contradictory aspects on the operation of CFRR, i.e., cooling the bed and accumulating heat, though the former is in general more prominent. Lowering the reference temperature for flow reversal can decrease the bed temperature and benefit stable operation under rich methane feed condition.
|
Keywords
ventilation air methane
reverse flow reactor
lean methane combustion
logic-based controller
mathematical modeling
|
Corresponding Author(s):
QIN Zhangfeng,Email:qzhf@sxicc.ac.cn; WANG Jianguo,Email:iccjgw@sxicc.ac.cn
|
Issue Date: 05 September 2013
|
|
1 |
Karakurt I, Aydin G, Aydiner K. Sources and mitigation of methane emissions by sectors: A critical review. Renewable Energy , 2012, 39(1): 40–48 doi: 10.1016/j.renene.2011.09.006
|
2 |
Su S, Beath A, Guo H, Mallett C. An assessment of mine methane mitigation and utilisation technologies. Progress in Energy and Combustion Science , 2005, 31(2): 123–170 doi: 10.1016/j.pecs.2004.11.001
|
3 |
Gosiewski K, Matros Y S, Warmuzinski K, Jaschik M, Tanczyk M. Homogeneous vs catalytic combustion of lean methane-air mixtures in reverse-flow reactors. Chemical Engineering Science , 2008, 63(20): 5010–5019 doi: 10.1016/j.ces.2007.09.013
|
4 |
Karakurt I, Aydin G, Aydiner K. Mine ventilation air methane as a sustainable energy source. Renewable & Sustainable Energy Reviews , 2011, 15(2): 1042–1049 doi: 10.1016/j.rser.2010.11.030
|
5 |
Warmuzinski K. Harnessing methane emissions from coal mining. Process Safety and Environmental Protection , 2008, 86(5): 315–320 doi: 10.1016/j.psep.2008.04.003
|
6 |
Trimm D. Catalytic combustion. Applied Catalysis A, General , 1983, 7(3): 249–282 doi: 10.1016/0166-9834(83)80027-X
|
7 |
Pio Forzatti G G. Catalytic combustion for the production of energy. Catalysis Today , 1999, 54(1): 165–180 doi: 10.1016/S0920-5861(99)00178-9
|
8 |
Zhang Y, Qin Z, Wang G, Zhu H, Dong M, Li S, Wu Z, Li Z, Wu Z, Zhang J, Hu T, Fan W, Wang J. Catalytic performance of MnOx-NiO composite oxide in lean methane combustion at low temperature. Applied Catalysis B: Environmental , 2013, 129(1): 172–181 doi: 10.1016/j.apcatb.2012.09.021
|
9 |
Wang B, Qin Z, Wang G, Wu Z, Fan W, Zhu H, Li S, Zhang Y, Li Z, Wang J. Catalytic combustion of lean methane at low temperature over palladium on a CoOx-SiO2 composite support. Catalysis Letters , 2013, 143(5): 411–417 doi: 10.1007/s10562-013-0988-4
|
10 |
Budhi Y W, Jaree A, Hoebink J H B J, Schouten J C. Simulation of reverse flow operation for manipulation of catalyst surface coverage in the selective oxidation of ammonia. Chemical Engineering Science , 2004, 59(19): 4125–4135 doi: 10.1016/j.ces.2004.04.040
|
11 |
Grigorios Kolios G E. Styrene synthesis in a reverse-flow reactor. Chemical Engineering Science , 1999, 54(13-14): 2637–2646 doi: 10.1016/S0009-2509(98)00444-8
|
12 |
Dillerop C, van den Berg H, van der Ham A G J. Novel syngas production techniques for GTL-FT synthesis of gasoline using reverse flow catalytic membrane reactors. Industrial & Engineering Chemistry Research , 2010, 49(24): 12529–12537 doi: 10.1021/ie1007568
|
13 |
Gl?ckler B, Kolios G, Eigenberger G. Analysis of a novel reverse-flow reactor concept for autothermal methane steam reforming. Chemical Engineering Science , 2003, 58(3-6): 593–601 doi: 10.1016/S0009-2509(02)00584-5
|
14 |
Matros Y S, Bunimovich G A. Reverse-flow operation in fixed bed catalytic reactors. Catalysis Reviews , 1996, 38(1): 1–68 doi: 10.1080/01614949608006453
|
15 |
Kolios G, Frauhammer J, Eigenberger G. Autothermal fixed-bed reactor concepts. Chemical Engineering Science , 2000, 55(24): 5945–5967 doi: 10.1016/S0009-2509(00)00183-4
|
16 |
Balaji S, Fuxman A, Lakshminarayanan S, Forbes J F, Hayes R E. Repetitive model predictive control of a reverse flow reactor. Chemical Engineering Science , 2007, 62(8): 2154–2167 doi: 10.1016/j.ces.2006.12.082
|
17 |
Devals C, Fuxman A, Bertrand F, Forbes J F, Perrier M, Hayes R E. Enhanced model predictive control of a catalytic flow reversal reactor. Canadian Journal of Chemical Engineering , 2009, 87(4): 620–631 doi: 10.1002/cjce.20194
|
18 |
Dufour P, Couenne F, Toure Y. Model predictive control of a catalytic reverse flow reactor. Control Systems Technology. IEEE Transactions on , 2003, 11(5): 705–714
|
19 |
Dufour P, Touré Y. Multivariable model predictive control of a catalytic reverse flow reactor. Computers & Chemical Engineering , 2004, 28(11): 2259–2270 doi: 10.1016/j.compchemeng.2004.04.006
|
20 |
Fuxman A M, Forbes J F, Hayes R E. Characteristics-based model predictive control of a catalytic flow reversal reactor. Canadian Journal of Chemical Engineering , 2007, 85(4): 424–432 doi: 10.1002/cjce.5450850405
|
21 |
Edouard D, Hammouri H, Zhou X G. Control of a reverse flow reactor for VOC combustion. Chemical Engineering Science , 2005, 60(6): 1661–1672 doi: 10.1016/j.ces.2004.10.020
|
22 |
Fuxman A M, Aksikas I, Forbes J F, Hayes R E. LQ-feedback control of a reverse flow reactor. Journal of Process Control , 2008, 18(7-8): 654–662 doi: 10.1016/j.jprocont.2007.12.005
|
23 |
Edouard D, Dufour P, Hammouri H. Observer based multivariable control of a catalytic reverse flow reactor: comparison between LQR and MPC approaches. Computers & Chemical Engineering , 2005, 29(4): 851–865 doi: 10.1016/j.compchemeng.2004.09.018
|
24 |
Fissore D, Barresi A A. Robust control of a reverse-flow reactor. Chemical Engineering Science , 2008, 63(7): 1901–1913 doi: 10.1016/j.ces.2007.12.018
|
25 |
Barresi A A, Vanni M. Control of catalytic combustors with periodical flow reversal. AIChE Journal. American Institute of Chemical Engineers , 2002, 48(3): 648–652 doi: 10.1002/aic.690480322
|
26 |
Hevia M A G, Ordó?ez S, Díez F V, Fissore D, Barresi A A. Design and testing of a control system for reverse-flow catalytic afterburners. AIChE Journal. American Institute of Chemical Engineers , 2005, 51(11): 3020–3027 doi: 10.1002/aic.10573
|
27 |
Balaji S, Lakshminarayanan S. Heat removal from reverse flow reactors used in methane combustion. Canadian Journal of Chemical Engineering , 2005, 83(4): 695–704 doi: 10.1002/cjce.5450830410
|
28 |
Mancusi E, Russo L, Brasiello A, Crescitelli S, di Bernardo M. Hybrid modeling and dynamics of a controlled reverse flow reactor. AIChE Journal. American Institute of Chemical Engineers , 2007, 53(8): 2084–2096 doi: 10.1002/aic.11216
|
29 |
Marín P, Ho W, Ordó?ez S, Díez F V. Demonstration of a control system for combustion of lean hydrocarbon emissions in a reverse flow reactor. Chemical Engineering Science , 2010, 65(1): 54–59 doi: 10.1016/j.ces.2009.02.003
|
30 |
Salomons S, Hayes R E, Poirier M, Sapoundjiev H. Modelling a reverse flow reactor for the catalytic combustion of fugitive methane emissions. Computers & Chemical Engineering , 2004, 28(9): 1599–1610 doi: 10.1016/j.compchemeng.2003.12.006
|
31 |
Aubé F, Sapoundjiev H. Mathematical model and numerical simulations of catalytic flow reversal reactors for industrial applications. Computers & Chemical Engineering , 2000, 24(12): 2623–2632 doi: 10.1016/S0098-1354(00)00618-9
|
32 |
Li Z, Qin Z, Zhang Y, Wu Z, Wang H, Li S, Shi R, Dong M, Fan W, Wang J. A control strategy of flow reversal with hot gas withdrawal for heat recovery and its application in mitigation and utilization of ventilation air methane in a reverse flow reactor. Chemical Engineering Journal , 2013, 228: 243–255 doi: 10.1016/j.cej.2013.04.105
|
33 |
Vortmeyer D, Jahnel W. Moving reaction zones in fixed bed reactors under the influence of various parameters. Chemical Engineering Science , 1972, 27(8): 1485–1496 doi: 10.1016/0009-2509(72)80041-1
|
34 |
Froment G F, Bischoff K B. Chemical Reactor Analysis and Design. New York: John Wiley & Sons, 1979, 476
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|