Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2013, Vol. 7 Issue (4) : 437-446    https://doi.org/10.1007/s11705-013-1349-y
RESEARCH ARTICLE
Exergy analysis of multi-stage crude distillation units
Xingang LI1,2, Canwei LIN1, Lei WANG3, Hong LI1,2()
1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; 2. National Engineering Research Center of Distillation Technology, Tianjin 300072, China; 3. Yunnan Jiehua Clean Energy Development Co., Ltd., Kunming 650224, China
 Download: PDF(345 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper aims to investigate the multi-stage effect on crude distillation units (CDUs) in thermodynamics. In this regard, we proposed three-, four-, five-, and six-stage CDU processes with all variables constrained to be almost the same except for the number of stages. We also analyzed the energy and exergy to assess the energy consumed by each process. Because additional distillation units would share the processing load and thus prevent products with low boiling points from overheating, the heat demand of the CDUs decreases with increasing stages and thus reduces the heat supply. Exergy loss is considered as a key parameter to assess these processes. When the exergy losses in heat exchangers are disregarded, the three- and four-stage CDUs have lower exergy losses than the five- and six-stage CDUs. When the overall exergy losses are considered, the optimum number of stages of CDUs depends on the exergy efficiency of heat integration.

Keywords exergy      exergy loss      crude oil distillation      multi-stage      energy saving     
Corresponding Author(s): LI Hong,Email:lihong.tju@163.com   
Issue Date: 05 December 2013
 Cite this article:   
Xingang LI,Canwei LIN,Lei WANG, et al. Exergy analysis of multi-stage crude distillation units[J]. Front Chem Sci Eng, 2013, 7(4): 437-446.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-013-1349-y
https://academic.hep.com.cn/fcse/EN/Y2013/V7/I4/437
1 Fahim M A, Al-Sahhaf T A, Elkilani A S. Fundamentals of petroleum refining. Elsevier Science , 2010, 69–93
2 Szklo A, Schaeffer R. Fuel specification, energy consumption and CO2 emission in oil refineries. Energy , 2007, 32(7): 1075-1092
doi: 10.1016/j.energy.2006.08.008
3 Miller W, Osborne H G. History and Development of Some Important Phases of Petroleum Refining in the United States. The Science of Petroleum , Vol 2. London: Oxford University Press, 1938, 1465-1477
4 Liebmann K, Dhole V R, Jobson M. Integrated design of a conventional crude oil distillation tower using pinch analysis. Chemical Engineering Research & Design , 1998, 76(3): 335-347
doi: 10.1205/026387698524767
5 Watkins R N. Petroleum Refinery Distillation. Houston: Gulf Publishing Company, 1973, 3-77
6 Bagajewicz M J. On the design flexibility of atmospheric crude fractionation units. Chemical Engineering Communications , 1998, 166(1): 111-136
doi: 10.1080/00986449808912383
7 Ji S, Bagajewicz M. Design of crude distillation plants with vacuum units. I. Targeting. Industrial & Engineering Chemistry Research , 2002, 41(24): 6094-6099
doi: 10.1021/ie011040u
8 Benali T, Tondeur D, Jaubert J N. An improved crude oil atmospheric distillation process for energy integration. Part I: Energy and exergy analyses of the process when a flash is installed in the preheating train. Applied Thermal Engineering , 2012, 32: 125-131
doi: 10.1016/j.applthermaleng.2011.08.038
9 Benali T, Tondeur D, Jaubert J N. An improved crude oil atmospheric distillation process for energy integration. Part II: New approach for energy saving by use of residual heat. Applied Thermal Engineering , 2012, 40: 132-144
doi: 10.1016/j.applthermaleng.2012.02.004
10 Wang Y H, Hou Y J, Gao H, Sun J S, Xu S M. Selecting the optimum predistillation scheme for heavy crude oils. Industrial & Engineering Chemistry Research , 2011, 50(18): 10549-10556
doi: 10.1021/ie102369k
11 Al-Muslim H, Dincer I, Zubair S M. Exergy analysis of single- and two-stage crude oil distillation units. Journal of Energy Resources Technology , 2003, 125(3): 199-207
doi: 10.1115/1.1595670
12 Al-Muslim H, Dincer I, Zubair S M. Effect of reference state on exergy efficiencies of one- and two-stage crude oil distillation plants. International Journal of Thermal Sciences , 2005, 44(1): 65-73
doi: 10.1016/j.ijthermalsci.2004.04.015
13 Wu J S, Chen J M, Li H J, Lu X P. Application of four-stage distillation technology in atmoaspheric and vacuum distillation unit expansion revampng. Lianyou Jishu Yu Gongcheng , 2003, 33(6): 35-38 (in Chinese)
14 Chen S J, Huang F X. New route for capacity expansion of atmospheric and vacuum distillation unit. Shiyou Lianzhi Yu Huagong , 2004, 35(7): 27-30 (in Chinese)
15 Zhang S W. Four-column process flow adopted in capacity expansion revamping of atmospheric and vacuum distillation unit. Lianyou Jishu Yu Gongcheng , 2005, 35(8): 7-11 (in Chinese)
16 Zhang G S. Application of four-stage distillation in the capacity expansion of ADU/VDU. Shiyou Huagong Sheji , 2006, 23(1): 40-42 (in Chinese)
17 Li Z Q. Crude Oil Distillation Process and Engineering. Beijing: China Petrochemical Press, 2010, 23-25 (in Chinese)
18 Wang Y B, Chen Q L, Zhang B J, Yan Y Z. Energy-use analysis and optimization for three-furnace four-column process flow in the atmospheric and vacuum distillation unit. Xi’an: 5th Chinese National Chemical and Biochemical Engineering Annual Meeting , 2008, 590-591 (in Chinese)
19 Li X G, Liu C J, Luo M F, Li H. Simulation and optimization of atmosphere-vacuum gradual distillation energy saving apparatuses. Huagong Jinzhan , 2009, 28(S2): 360-363 (in Chinese)
20 Li X G, Wang Z J, Li H, Zhu T Y, Luo M F, Jiang B, Liu C J, Tan X R, Chen N, Xu L Q. CN Patent, 101348730, 2009-01-21 (in Chinese)
21 Bagajewicz M, Ji S C. Rigorous procedure for the design of conventional atmospheric crude fractionation units. Part I: Targeting. Industrial & Engineering Chemistry Research , 2001, 40(2): 617-626
doi: 10.1021/ie000302+
22 Demirel Y. Thermodynamic analysis. Arabian Journal for Science and Engineering , 2013, 38(2): 221-249
doi: 10.1007/s13369-012-0450-8
23 Radgen P, Lucas K. Energy system analysis is fertilizer complex—Pinch analysis vs. exergy analysis. Chemical Engineering & Technology , 1996, 19(2): 192-195
doi: 10.1002/ceat.270190213
24 Linnhoff B, Hindmarsh E. The pinch design method for heat exchanger networks. Chemical Engineering Science , 1983, 38(5): 745-763
doi: 10.1016/0009-2509(83)80185-7
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed