Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2013, Vol. 7 Issue (4) : 422-427    https://doi.org/10.1007/s11705-013-1353-2
RESEARCH ARTICLE
Synthesis and characterization of phosphotungstic acid/activated carbon as a novel ultrasound oxidative desulfurization catalyst
Liyan LIU, Yu ZHANG, Wei TAN()
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
 Download: PDF(202 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Phosphotungstic acid/activated carbon (PTA/AC) catalysts with various AC sizes or PTA content have been synthesized and characterized by N2 physisorption, X-ray diffraction, Fourier transform infrared spectroscopy and temperature programmed desorption of ammonia. These catalysts were then evaluated in terms of the removal of dibenzothiophene (DBT) by ultrasound-assisted oxidative desulfurization process. The results showed that the DBT conversion obviously increased with the decrease of AC support size and the increase of PTA content. After supporting PTA on AC, the DBT conversion can be improved by 38.9% after ultrasound irradiation for 10 min. In addition, the stability tests of PTA/AC showed that the catalytic oxidative activity of PTA/AC was nearly kept constant after ultrasound irradiation for 20 min, which makes it a promising catalyst to use in ultrasound-assisted oxidative desulfurization process.

Keywords phosphotungstic acid      activated carbon      ultrasound-assisted oxidative desulfurization     
Corresponding Author(s): TAN Wei,Email:wtan@tju.edu.cn   
Issue Date: 05 December 2013
 Cite this article:   
Liyan LIU,Yu ZHANG,Wei TAN. Synthesis and characterization of phosphotungstic acid/activated carbon as a novel ultrasound oxidative desulfurization catalyst[J]. Front Chem Sci Eng, 2013, 7(4): 422-427.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-013-1353-2
https://academic.hep.com.cn/fcse/EN/Y2013/V7/I4/422
Fig.1  XRD patterns of AC and PTA/AC with different PTA content
Fig.2  FT-IR spectra of PTA/AC with different PTA content
SampleSpecific area /(m2·g-1)Total pore volume/(mL·g-1)Average pore diameter/nm
30-60 mesha)678--
60-90 mesha)755--
90-180 mesha)1060--
180- mesha)1076--
ACb)14401.0512.919
PTA/AC-1b)13100.8552.930
PTA/AC-5b)12580.8212.890
PTA/AC-10b)11170.8112.905
PTA/AC-15b)10290.7292.870
PTA/AC-20b)10090.6482.830
Tab.1  Specifications of the supported catalysts
Fig.3  NH-TPD profiles of PTA/AC with different PTA content
Fig.4  Effect of calcination treatment on the catalytic activity of PTA/AC (Conditions: 10 mL model oil, mass ratio of PTA/AC-10 catalyst/model oil= 1.42 : 100, volume ratio of HO/mode oil= 1 : 5, ultrasound power: 100 W, 60°C, ultrasound reaction time: 10 min)
Fig.5  Effect of particle sizes on the catalytic activity of PTA/AC (Conditions: 20 mL model oil, mass ratio of PTA/AC-10 catalyst/model oil=1.07 : 100, volume ratio of HO/mode oil= 1 : 10, ultrasound power: 100 W, 60°C, ultrasound reaction time: 10 min)
Fig.6  Role of supporting PTA on AC and ultrasound irradiation on the catalytic oxidation of DBT (Conditions: 40 mL model oil, mass ratio of PTA/AC-10 catalyst/model oil=1.25 : 100, volume ratio of HO/mode oil= 1:10, ultrasound power: 70 W, 60°C)
Fig.7  Effect of PTA content on the catalytic oxidation of DBT (Conditions: 20 mL model oil, mass ratio of catalyst/model oil=1.07 : 100, volume ratio of HO/mode oil=1 : 10, ultrasound power: 100 W, 60°C, ultrasound reaction time: 10 min)
Fig.8  Effect of ultrasound on the catalytic activity of PTA/AC (Conditions: 40 mL model oil, mass ratio of PTA/AC-10 catalyst/model oil= 1.25 : 100, volume ratio of HO/mode oil= 1 : 10, 60°C)
1 Collins F M, Lucy A R, Sharp C. Oxidative desulphurisation of oils via hydrogen peroxide and heteropolyanion catalysis. Journal of Molecular Catalysis A Chemical , 1997, 117(1): 397–403
doi: 10.1016/S1381-1169(96)00251-8
2 Campos-Martin J M, Capel-Sanchez M C, Perez-Presas P, Fierro J L G. Highly efficient deep desulfurization of fuels by chemical oxidation. Green Chemistry , 2004, 6(11): 557–562
doi: 10.1039/b409882j
3 Campos-Martin J M, Capel-Sanchez M C, Perez-Presas P, Fierro J L G. Oxidative processes of desulfurization of liquid fuels. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire) , 2010, 85(7): 879–890
doi: 10.1002/jctb.2371
4 Srivastava V C. An evaluation of desulfurization technologies for sulfur removal from liquid fuels. RSC Advances , 2012, 2(3): 759–783
doi: 10.1039/c1ra00309g
5 Patrick S T, James T K, John W E. Desulfurization of fuel oil by oxidation and extraction. 1. Enhancement of extraction oil yield. Industrial & Engineering Chemistry Research , 1990, 29(3): 321–324
doi: 10.1021/ie00099a002
6 Shujiro O, Takeshi N, Noriko T, Weihua Q, Atsushi I, Tamotsu I, Toshiaki K. Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction. Energy & Fuels , 2000, 14(6): 1232–1239
doi: 10.1021/ef000096i
7 Wang D H, Qian E W, Amano H, Okata K, Ishihara A, Kabe T. Oxidative desulfurization of fuel oil: Part I. Oxidation of dibenzothiophenes using tert-butyl hydroperoxide. Applied Catalysis A, General , 2003, 253(1): 91–99
doi: 10.1016/S0926-860X(03)00528-3
8 Yu G X, Lu S X, Chen H, Zhu Z N. Oxidative desulfurization of diesel fuels with hydrogen peroxide in the presence of activated carbon and formic acid. Energy & Fuels , 2005, 19(2): 447–452
doi: 10.1021/ef049760b
9 Yu G X, Lu S X, Chen H, Zhu Z N. Diesel fuel desulfurization with hydrogen peroxide promoted by formic acid and catalyzed by activated carbon. Carbon , 2005, 43(11): 2285–2294
doi: 10.1016/j.carbon.2005.04.008
10 Mei H, Mei B, Yen T F. A new method for obtaining ultra-low sulfur diesel fuel via ultrasound assisted oxidative desulfurization. Fuel , 2003, 82(4): 405–414
doi: 10.1016/S0016-2361(02)00318-6
11 Deshpande A, Bassi A, Prakash A. Ultrasound-assisted, base-catalyzed oxidation of 4,6-dimethyldibenzothiophene in a biphasic diesel-acetonitrile system. Energy & Fuels , 2005, 19(1): 28–34
doi: 10.1021/ef0340965
12 Wan M W, Yen T F. Enhance efficiency of tetraoctylammonium fluoride applied to ultrasound-assisted oxidative desulfurization (UAOD) process. Applied Catalysis A, General , 2007, 319: 237–245
doi: 10.1016/j.apcata.2006.12.008
13 Dai Y C, Qi Y T, Zhao D Z, Zhang H C. An oxidative desulfurization method using ultrasound/Fenton's reagent for obtaining low and/or ultra-low sulfur diesel fuel. Fuel Processing Technology , 2008, 89(10): 927–932
doi: 10.1016/j.fuproc.2008.03.009
14 Wan M W, Yen T F. Portable continuous ultrasound-assisted oxidative desulfurization unit for marine gas oil. Energy & Fuels , 2008, 22(2): 1130–1135
doi: 10.1021/ef7006358
15 Mello P D A, Duarte F A, Nunes M A G, Alencar M S, Moreira E M, Korn M, Dressler V L, Flores é M M. Ultrasound-assisted oxidative process for sulfur removal from petroleum product feedstock. Ultrasonics Sonochemistry , 2009, 16(6): 732–736
doi: 10.1016/j.ultsonch.2009.03.002
16 Duarte F A, Mello P D A, Bizzi C A, Nunes M A G, Moreira E M, Alencar M S, Motta H N, Dressler V L, Flores é M M. Sulfur removal from hydrotreated petroleum fractions using ultrasound-assisted oxidative desulfurization process. Fuel , 2011, 90(6): 2158–2164
doi: 10.1016/j.fuel.2011.01.030
17 Gonzalez L A, Kracke P, Green W H, Tester J W, Shafer L M, Timko M T. Oxidative desulfurization of middle-distillate fuels using activated carbon and power ultrasound. Energy & Fuels , 2012, 26(8): 5164–5176
doi: 10.1021/ef201289r
18 Jalil P A, Al-Daous M A, Al-Arfaj A R A, Al-Amer A M, Beltramini J, Barri S A I. Characterization of tungstophosphoric acid supported on MCM-41 mesoporous silica using n-hexane cracking, benzene adsorption, and X-ray diffraction. Applied Catalysis A, General , 2001, 207(1): 159–171
doi: 10.1016/S0926-860X(00)00670-0
19 Chimienti M E, Pozzio L R, Caceres C V, Blanco M N. Tungstophosphoric and tungstosilicic acids on carbon as acidic catalysts. Applied Catalysis A, General , 2001, 208(1): 7–19
doi: 10.1016/S0926-860X(00)00702-X
20 Wang L. Study on desulfurization of oil catalyzed oxidation by supported heteropoly acid in microemulsion. Dissertation for the Doctoral Degree. Shandong: Ocean University of China, 2011, 31–32 (in Chinese)
21 Tuziuti T, Yasui K, Sivakumar M, Lida Y, Miyoshi N. Correlation between acoustic cavitation noise and yield enhancement of sonochemical reaction by particle addition. Journal of Physical Chemistry A , 2005, 109(21): 4869–4872
doi: 10.1021/jp0503516
22 Liu L Y, Wen J J, Yang Y, Wei T. The influence of particle addition in the ultrasonic cavitation. Chemical Industry and Engineering , 2013, 30(1): 59–66 (in Chinese)
23 Timofeeva M N. Acid catalysis by heteropoly acids. Applied Catalysis A, General , 2003, 256(1): 19–35
doi: 10.1016/S0926-860X(03)00386-7
[1] Hanlu Wang, Idris Jibrin, Xingye Zeng. Catalytic oxidative desulfurization of gasoline using phosphotungstic acid supported on MWW zeolite[J]. Front. Chem. Sci. Eng., 2020, 14(4): 546-560.
[2] Rusen Zhou, Renwu Zhou, Xianhui Zhang, Kateryna Bazaka, Kostya (Ken) Ostrikov. Continuous flow removal of acid fuchsine by dielectric barrier discharge plasma water bed enhanced by activated carbon adsorption[J]. Front. Chem. Sci. Eng., 2019, 13(2): 340-349.
[3] Elaheh Mehrvarz, Ali A. Ghoreyshi, Mohsen Jahanshahi. Surface modification of broom sorghum-based activated carbon via functionalization with triethylenetetramine and urea for CO2capture enhancement[J]. Front. Chem. Sci. Eng., 2017, 11(2): 252-265.
[4] Rovshan MAHMUDOV, Chinglung CHEN, Chin-Pao HUANG. Functionalized activated carbon for the adsorptive removal of perchlorate from water solutions[J]. Front. Chem. Sci. Eng., 2015, 9(2): 194-208.
[5] N. Rambabu,Sandeep Badoga,Kapil K. Soni,A.K. Dalai,J. Adjaye. Hydrotreating of light gas oil using a NiMo catalyst supported on activated carbon produced from fluid petroleum coke[J]. Front. Chem. Sci. Eng., 2014, 8(2): 161-170.
[6] Bingnan REN. Kinetics and thermodynamics of the phosphine adsorption on the modified activated carbon[J]. Front Chem Sci Eng, 2011, 5(2): 203-208.
[7] WANG Yuxin, LIU Congmin, ZHOU Yaping. Preparation and adsorption performances of mesopore-enriched bamboo activated carbon [J]. Front. Chem. Sci. Eng., 2008, 2(4): 473-477.
[8] YU Moxin, LI Zhong, XI Hongxia, XIA Qibin, WANG Shuwen. Effect of textural property of coconut shell-based activated carbon on desorption activation energy of benzothiophene[J]. Front. Chem. Sci. Eng., 2008, 2(3): 269-275.
[9] YU Guoxian, CHEN Hui, LU Shanxiang, ZHU Zhongnan. Deep desulfurization of diesel fuels by catalytic oxidation[J]. Front. Chem. Sci. Eng., 2007, 1(2): 162-166.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed