Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2014, Vol. 8 Issue (1) : 73-78    https://doi.org/10.1007/s11705-014-1404-3
RESEARCH ARTICLE
Templated synthesis of urchin-like zinc oxide particles by micro-combustion
Xintong ZHOU1,2, Quan ZHANG1, Chang-jun LIU1,2()
1. Advanced Nanotechnology Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; 2. Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
 Download: PDF(374 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Micro-combustion initiated by dielectric barrier discharge plasma has been applied for the removal of carbon template to prepare urchin-like ZnO particles. The combustion is operated at atmospheric pressure and low gas temperature (less than 150 °C), and the template is fully decomposed and rapidly removed. The obtained urchin-like ZnO possesses two distinct morphologies: nanosheets and sub-micro rods. The unique morphologies form on ZnO hexagonal nuclei with the template effect of activated carbon.

Keywords dielectric-barrier discharge      zinc oxide      carbon template      removal      plasma     
Corresponding Author(s): LIU Chang-jun,Email:coronacj@tju.edu.cn   
Issue Date: 05 March 2014
 Cite this article:   
Xintong ZHOU,Quan ZHANG,Chang-jun LIU. Templated synthesis of urchin-like zinc oxide particles by micro-combustion[J]. Front Chem Sci Eng, 2014, 8(1): 73-78.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-014-1404-3
https://academic.hep.com.cn/fcse/EN/Y2014/V8/I1/73
Fig.1  Schematic representative of the dielectric-barrier discharge apparatus
Fig.2  XRD patterns of the ZnO sample from micro-combustion
Fig.3  SEM and TEM images of the ZnO sample from micro-combustion (a) and (b) SEM images of the structure of the sample. (c) and (d) TEM images of ZnO nano-sheets. (e) TEM image of ZnO rods. (f) TEM image of the interface between ZnO rods and nano- sheets
Fig.4  Schematic representative of ZnO sub-micro rod formation under the influence of DBD
Fig.5  Schematic representative of ZnO nanosheet formation with carbon template
1 Jun S, Joo S H, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. Journal of the American Chemical Society , 2000, 122(43): 10712–10713
doi: 10.1021/ja002261e
2 Zhang Z, Zuo F, Feng P. Hard template synthesis of crystalline mesoporous anatase TiO2 for photocatalytic hydrogen evolution. Journal of Materials Chemistry , 2010, 20(11): 2206–2212
doi: 10.1039/b921157h
3 Gao C B, Zhang Q, Lu Z D, Yin Y D. Templated synthesis of metal nanorods in silica nanotubes. Journal of the American Chemical Society , 2011, 133(49): 19706–19709
doi: 10.1021/ja209647d
4 Li W, Zhao D. Extension of the St?ber method to construct mesoporous SiO2 and TiO2 shells for uniform multifunctional core-shell structures. Advanced Materials , 2013, 25(1): 142–149
doi: 10.1002/adma.201203547
5 Yue W, Xu X, Irvine J T S, Attidekou P S, Liu C, He H, Zhao D, Zhou W. Mesoporous monocrystalline TiO2 and its solid-state electrochemical properties. Chemistry of Materials , 2009, 21(12): 2540–2546
doi: 10.1021/cm900197p
6 Schuth F. Endo- and exotemplating to create high-surface-area inorganic materials. Angewandte Chemie International Edition , 2003, 42(31): 3604–3622
doi: 10.1002/anie.200300593
7 Liu C J, Burghaus U, Besenbacher F, Wang Z L. Preparation and characterization of nanomaterials for sustainable energy production. ACS Nano , 2010, 4(10): 5517–5526
doi: 10.1021/nn102420c
8 Liu Y, Pan Y X, Wang Z J, Kuai P Y, Liu C J. Facile and fast template removal from mesoporous MCM-41 molecular sieve using dielectric-barrier discharge plasma. Catalysis Communications , 2010, 11(6): 551–554
doi: 10.1016/j.catcom.2009.12.017
9 Liu Y, Pan Y X, Kuai P Y, Liu C J. Template removal from ZSM-5 zeolite using dielectric-barrier discharge plasma. Catalysis Letters , 2010, 135(3–4): 241–245
doi: 10.1007/s10562-010-0290-7
10 Guo Q T, With P, Liu Y, Glaser R, Liu C J. Carbon template removal by dielectric-barrier discharge plasma for the preparation of zirconia. Catalysis Today , 2013, 211: 156–161
doi: 10.1016/j.cattod.2013.02.032
11 Liu C J, Ye J Y, Jiang J J, Pan Y X. Progresses in the preparation of coke resistant ni-based catalyst for steam and CO2 reforming of methane. Chemcatchem , 2011, 3(3): 529–541
doi: 10.1002/cctc.201000358
12 Starikovskiy A, Aleksandrov N. Plasma-assisted ignition and combustion. Progress in Energy and Combustion Science , 2013, 39(1): 61–110
doi: 10.1016/j.pecs.2012.05.003
13 Sun Q D, Yu B, Liu C J. Characterization of ZnO nanotube fabricated by the plasma decomposition of Zn(OH)2 via dielectric barrier discharge. Plasma Chemistry and Plasma Processing , 2011, 32(2): 201–209
doi: 10.1007/s11090-011-9337-9
14 Gu Z J, Paranthaman M P, Xu J, Pan Z W. Aligned ZnO nanorod arrays grown directly on zinc foils and zinc spheres by a low-temperature oxidization method. ACS Nano , 2009, 3(2): 273–278
doi: 10.1021/nn800759y
15 Zolfaghari G, Esmaili-Sari A, Anbia M, Younesi H, Ghasemian M B. A zinc oxide-coated nanoporous carbon adsorbent for lead removal from water: optimization, equilibrium modeling, and kinetics studies. International Journal of Environmental Science and Technology , 2013, 10(2): 325–340
doi: 10.1007/s13762-012-0135-6
[1] Lisa Xu, Kaifei Chen, George Q. Chen, Sandra E. Kentish, Gang (Kevin) Li. Development of barium@alginate adsorbents for sulfate removal in lithium refining[J]. Front. Chem. Sci. Eng., 2021, 15(1): 198-207.
[2] Sen Wang, Shiyun Liu, Danhua Mei, Rusen Zhou, Congcong Jiang, Xianhui Zhang, Zhi Fang, Kostya (Ken) Ostrikov. Liquid discharge plasma for fast biomass liquefaction at mild conditions: The effects of homogeneous catalysts[J]. Front. Chem. Sci. Eng., 2020, 14(5): 763-771.
[3] Feichao Wu, Yanling Wang, Xiongfu Zhang. Flow synthesis of a novel zirconium-based UiO-66 nanofiltration membrane and its performance in the removal of p-nitrophenol from water[J]. Front. Chem. Sci. Eng., 2020, 14(4): 651-660.
[4] Guoxing Chen, Marc Widenmeyer, Binjie Tang, Louise Kaeswurm, Ling Wang, Armin Feldhoff, Anke Weidenkaff. A CO and CO2 tolerating (La0.9Ca0.1)2(Ni0.75Cu0.25)O4+d Ruddlesden-Popper membrane for oxygen separation[J]. Front. Chem. Sci. Eng., 2020, 14(3): 405-414.
[5] Daniil Marinov. Kinetic Monte Carlo simulations of plasma-surface reactions on heterogeneous surfaces[J]. Front. Chem. Sci. Eng., 2019, 13(4): 815-822.
[6] Romain Chanson, Remi Dussart, Thomas Tillocher, P. Lefaucheux, Christian Dussarrat, Jean François de Marneffe. Low-k integration: Gas screening for cryogenic etching and plasma damage mitigation[J]. Front. Chem. Sci. Eng., 2019, 13(3): 511-516.
[7] Liangliang Lin, Xintong Ma, Sirui Li, Marly Wouters, Volker Hessel. Plasma-electrochemical synthesis of europium doped cerium oxide nanoparticles[J]. Front. Chem. Sci. Eng., 2019, 13(3): 501-510.
[8] Bin Xu, Toshiro Kaneko, Toshiaki Kato. Improvement in growth yield of single-walled carbon nanotubes with narrow chirality distribution by pulse plasma CVD[J]. Front. Chem. Sci. Eng., 2019, 13(3): 485-492.
[9] Athanasios Smyrnakis, Angelos Zeniou, Kamil Awsiuk, Vassilios Constantoudis, Evangelos Gogolides. A non-lithographic plasma nanoassembly technology for polymeric nanodot and silicon nanopillar fabrication[J]. Front. Chem. Sci. Eng., 2019, 13(3): 475-484.
[10] Tingting Zhao, Niamat Ullah, Yajun Hui, Zhenhua Li. Review of plasma-assisted reactions and potential applications for modification of metal–organic frameworks[J]. Front. Chem. Sci. Eng., 2019, 13(3): 444-457.
[11] Aswathy Vasudevan, Vasyl Shvalya, Aleksander Zidanšek, Uroš Cvelbar. Tailoring electrical conductivity of two dimensional nanomaterials using plasma for edge electronics: A mini review[J]. Front. Chem. Sci. Eng., 2019, 13(3): 427-443.
[12] Xiuqi Fang, Carles Corbella, Denis B. Zolotukhin, Michael Keidar. Plasma-enabled healing of graphene nano-platelets layer[J]. Front. Chem. Sci. Eng., 2019, 13(2): 350-359.
[13] Rusen Zhou, Renwu Zhou, Xianhui Zhang, Kateryna Bazaka, Kostya (Ken) Ostrikov. Continuous flow removal of acid fuchsine by dielectric barrier discharge plasma water bed enhanced by activated carbon adsorption[J]. Front. Chem. Sci. Eng., 2019, 13(2): 340-349.
[14] Leila Ouni, Ali Ramazani, Saeid Taghavi Fardood. An overview of carbon nanotubes role in heavy metals removal from wastewater[J]. Front. Chem. Sci. Eng., 2019, 13(2): 274-295.
[15] J. Christopher Whitehead. Plasma-catalysis: Is it just a question of scale?[J]. Front. Chem. Sci. Eng., 2019, 13(2): 264-273.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed