Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2015, Vol. 9 Issue (2) : 209-215    https://doi.org/10.1007/s11705-014-1448-4
RESEARCH ARTICLE
Phosphorous removal from wastewater by lanthanum modified Y zeolites
Weikang ZHANG,Ye TIAN()
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
 Download: PDF(291 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The adsorption capacities of Y zeolite and La (III)-modified Y zeolite were studied. A series of La(III)-modified Y zeolites with different La/Y zeolite mass ratios were characterized by X-ray diffraction, X-ray fluorescence and Brunauer-Emmett-Teller surface area analysis. Batch experiments were conducted to evaluate the effects of various experimental parameters, such as pH, ionic strength, coexisting anions (CO32-, Cl-, SO42- and NO3-) and temperature, on the phosphate adsorption. The capacity of the La (III)-modified Y zeolite to remove phosphate increased as the La/Y zeolite mass ratio increased and after 4 h, a phosphate removal efficiency of 95% was achieved for a La/Y zeolite mass ratio of 0.10. The equilibrium adsorption isotherm data correlated better to the Langmuir model than the Freundlich model and the data followed a pseudo-second-order kinetic equation.

Keywords phosphate removal      wastewater      lanthanum      impregnation      Y zeolites     
Corresponding Author(s): Ye TIAN   
Online First Date: 17 November 2014    Issue Date: 14 July 2015
 Cite this article:   
Ye TIAN,Weikang ZHANG. Phosphorous removal from wastewater by lanthanum modified Y zeolites[J]. Front. Chem. Sci. Eng., 2015, 9(2): 209-215.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-014-1448-4
https://academic.hep.com.cn/fcse/EN/Y2015/V9/I2/209
Sample SiO2 Al2O3 La2O3 Na2O
Na-Y 73.23 17.45 0 8.68
H-Y 80.78 18.48 0 0.32
La-Y0.03 78.45 18.01 2.54 0.27
La-Y0.05 77.34 17.90 4.23 0.23
La-Y0.10 72.85 16.69 9.38 0.24
Tab.1  Elemental composition of Y zeolites and La-Yx samples (in mass %)
Fig.1  XRD patterns of Y zeolites: (A) Na-Y zeolite, (B) H-Y zeolite, (3) La-Y0.05, and (4) La-Y0.10.
Sample SBET/m2·g-1 Vp/cm3·g-1
Na-Y 451.1 0.351
H-Y 579.5 0.489
La-Y0.03 542.7 0.468
La-Y0.05 512.4 0.426
La-Y0.10 489.6 0.393
Tab.2  BET surface area of Y zeolites and La-Yx samples
Fig.2  Effect of different mass ratios of La/Y on phosphate removal: (A) 20 mol·L–1g La-Y0.12, (B) 20 mol·L–1g La-Y0.10, (C) 20 mol·L–1g La-Y0.08, (D) 20 mol·L–1g La-Y0.05, (E) 20 mol·L–1g La-Y0.03 ,(F) 20 mol·L–1g H-Y, (G) 20 mol·L–1g Na-Y; P concentration= 1.0 mol·L–1g·L-1, pH= 6.3, 100 mol·L–1L solution.
Fig.3  Adsorption isotherm of phosphate by La-Y0.10. (—): Langmuir model; (- -): Freundlich model. 20 mol·L–1g La-Y0.10, pH= 6.3, 100 mol·L–1L solution.
Temperature /°C Freundlich equation Langmuir equation
kF 1/n R2 Qm/mg·g-1 k L/L·mg-1 R2
30 5.57 0.476 0.979 16.6 0.496 0.999
35 6.24 0.451 0.980 17.5 0.543 0.998
40 7.05 0.432 0.985 19.2 0.571 0.996
Tab.3  Estimated isotherm parameters for phosphate adsorption on La-Y0.10
Fig.4  Adsorption kinetics of phosphate on La-Y0.10. (—): pseudo-first-order model; (- -): pseudo-second-order model. 20 mol·L–1g La-Y0.10, P concentration= 5.0 mol·L–1g·L-1, pH= 6.3, 100 mol·L–1L solution.
Pseudo first-order model Pseudo second-order model
k1 /min-1 R2 k2 /(g·mg-1·min-1) h /(mg·g-1·min-1) R2
0.0119 0.958 0.0021 0.142 0.998
Tab.4  Kinetic parameters for phosphate adsorption on La-Y0.10
Temperature /°C ΔG0/(kJ·mol-1) ΔH0/(kJ·mol-1) ΔS0/(J·mol-1)
30 -3.04 66.87 248.3
35 -3.37
40 -3.73
Tab.5  Thermodynamic parameters for phosphate adsorption on La-Y0.10
Fig.5  Effect of initial pH on adsorption capacity. 20 mol·L–1g La-Y0.10, P concentration= 5.0 mol·L–1g·L-1, 100 mol·L–1L solution.
Fig.6  Effect of ionic strength on the adsorption of phosphate. 20 mol·L–1g La-Y0.10, P concentration= 1.0 mol·L–1g·L-1, 100 mol·L–1L solution at pH= 6.3.
Fig.7  Effect of coexisting anions on the adsorption of phosphate. 20 mol·L–1g La-Y0.10, P concentration= 1.0 mol·L–1g·L-1, 100 mol·L–1L solution at pH= 6.3.
Fig.8  Variation of adsorption capacity of La-Y0.10 effected by regeneration times. 20 mol·L–1g adsorbent, P concentration= 1.0 mol·L–1g·L-1, pH= 6.3, 100 mol·L–1L solution.
1 Zhao D, Sengupta A K. Ultimate removal of phosphate from wastewater using a new class of polymetric ion exchangers. Water Research, 1998, 32(5): 1613-1625
2 De-Bashana L E, Bashan Y. Recent advances in removing phosphorus from wastewater and its future use as fertilizer. Water Research, 2004, 38(19): 4222-4246
3 Mulkerrins D, Dobson A D W, Colleran E. Parameters affecting biological phosphate removal from wastewaters. Environment International, 2004, 30(2): 249-259
4 Zhu X P, Jyo A. Column-mode phosphate removal by a novel highly selective adsorbent. Water Research, 2005, 39(11): 2301-2308
5 Oguz E, Gurses A, Canpolat N. Removal of phosphate from waste water. Cement and Concrete Research, 2003, 33(8): 1109-1112
6 Strickland J. The development and application of phosphorus removal from wastewater using biological and metal precipitation techniques. Water and Environment Journal, 1998, 12(1): 30-37
7 Wade D H, Zhao D Y, Arup K S. Preparation and characterization of a new class of polymeric ligand exchangers for selective removal of trace contaminants from water. Reactive & Functional Polymers, 2004, 60: 101-120
8 Spiro D A. New polymer-supported ion-complexing agents: Design, preparation and metal ion affinities of immobilized ligands. Journal of Hazardous Materials, 2007, 31(3): 467-470
9 Delaneya P, Manamon C M, Hanrahan J P, Copley M P, Holmes J D, Morris M A. Development of chemically engineered porous metal oxides for phosphate removal. Journal of Hazardous Materials, 2011, 185(1): 382-391
10 Cheng X, Huang X, Wang X Z, Sun D Z. Influence of calcination on the adsorptive removal of phosphate by Zn-Al layered double hydroxides from excess sludge liquor. Journal of Hazardous Materials, 2010, 177(1-3): 516-523
11 Onyango M S, Kuchar D, Kubota M, Matsuda H. Adsorptive removal of phosphate ions from aqueous solution using synthetic zeolite. Industrial & Engineering Chemistry Research, 2007, 46(3): 894-900
12 Xue Y J, Hou H B, Zhu S J. Characteristics and mechanisms of phosphate adsorption onto basic oxygen furnace slag. Journal of Hazardous Materials, 2009, 162(2-3): 973-980
13 Jyotsnamayee P, Jasobanta D, Surendranath D, Ravindra S T. Adsorption of phosphate from aqueous solution using activated red mud. Journal of Colloid and Interface Science, 1998, 204(1): 169-172
14 Tian S L, Jiang P X, Ning P, Su Y H. Enhanced adsorption removal of phosphate from water by mixed lanthanum/aluminum pillared montmorillonite. Chemical Engineering Joournal, 2009, 151(1-3): 141-148
15 Ou E C, Zhou J J, Mao S C, Wang J Q, Xia F, Min L. Highly efficient removal of phosphate by lanthanum-doped mesoporous SiO2. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 308(1-3): 47-53
16 Zhang J D, Shen Z M, Shan W P, Chen Z Y, Mei Z J, Lei Y M, Wang W H. Adsorption behavior of phosphate on Lanthanum (III) doped mesoporous silicates material. Journal of Environmental Sciences (China), 2010, 22(4): 507-518
17 Zhang L, Zhou Q, Liu J Y, Chang N, Wan L H, Chen J H. Phosphate adsorption on lanthanum hydroxide-doped activated carbon fiber. Chemical Engineering Journal, 2012, 185: 160-167
18 Liu J Y, Zhou Q, Chen J H, Zhang L, Chang N. Phosphate adsorption on hydroxyl-iron-lanthanum doped activated carbon fiber. Chemical Engineering Journal, 2013, 215: 859-847
19 Wang H G, Jiang H, Xu J, Sun Z L, Zhang X T, Zhu H L, Song L J. Effects of benzene and 1-octene on desulfurization by selective adsorption with Ce(IV) Y. Acta Physico-Chimica Sinica, 2008, 24(9): 1714-1718
20 Zheng S, Gao L, Guo J K. Under the mild condition modification and characterization of mesoporous molecular sieve MCM-41. Jounral of Inorganic Materials, 2000, 15(5): 844-848
21 Velu S, Ma X, Song C. Selective adsorption for removing sulfur from jet fuel over zeolite-based adsorbents. Industrial & Engineering Chemistry Research, 2003, 42(21): 5293-5304
22 APHA. Standard Methods for the Examination of Water and Wastewater. 20th ed. American Public Health Association/American Water Works Association/Water Environment Federation, Washington, DC, USA, 1998
23 Li H, Ru J Y, Yin W, Liu X H, Wang J Q, Zhang W D. Removal of phosphate from polluted water by lanthanum doped vesuvianite. Journal of Hazardous Materials, 2009, 168(1): 326-330
24 Liu J Y, Wan L H, Zhang L, Zhou Q. Effect of pH, ionic strength, and temperature on the phosphate adsorption onto lanthanum-doped activated carbon fiber. Journal of Colloid and Interface Science, 2011, 364(2): 490-496
25 Boujelben N, Bouzid J, Elouear Z, Feki M, Jamoussi F, Montiel A. Phosphorus removal from aqueous solution using iron coated natural and engineered sorbents. Journal of Hazardous Materials, 2007, 151(1): 103-110
26 Murray B M. A critique of diffuse double layer models applied to colloid and surface chemistry. Clays and Clay Minerals, 1997, 45(4): 598-608
[1] Bangxian Peng, Rusen Zhou, Ying Chen, Song Tu, Yingwu Yin, Liyi Ye. Immobilization of nano-zero-valent irons by carboxylated cellulose nanocrystals for wastewater remediation[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1006-1017.
[2] Zishuai Liu, Yimin Zhang, Zilin Dai, Jing Huang, Cong Liu. Coextraction of vanadium and manganese from high-manganese containing vanadium wastewater by a solvent extraction-precipitation process[J]. Front. Chem. Sci. Eng., 2020, 14(5): 902-912.
[3] Chunlong Zhao, Mingming He, Hongbin Cao, Xiaohong Zheng, Wenfang Gao, Yong Sun, He Zhao, Dalong Liu, Yanling Zhang, Zhi Sun. Investigation of solution chemistry to enable efficient lithium recovery from low-concentration lithium-containing wastewater[J]. Front. Chem. Sci. Eng., 2020, 14(4): 639-650.
[4] Hanlu Wang, Idris Jibrin, Xingye Zeng. Catalytic oxidative desulfurization of gasoline using phosphotungstic acid supported on MWW zeolite[J]. Front. Chem. Sci. Eng., 2020, 14(4): 546-560.
[5] Rusen Zhou, Renwu Zhou, Xianhui Zhang, Kateryna Bazaka, Kostya (Ken) Ostrikov. Continuous flow removal of acid fuchsine by dielectric barrier discharge plasma water bed enhanced by activated carbon adsorption[J]. Front. Chem. Sci. Eng., 2019, 13(2): 340-349.
[6] Ehsan Salehi, Fereshteh Soroush, Maryam Momeni, Aboulfazl Barati, Ali Khakpour. Chitosan/polyethylene glycol impregnated activated carbons: Synthesis, characterization and adsorption performance[J]. Front. Chem. Sci. Eng., 2017, 11(4): 575-585.
[7] Kanchapogu Suresh, G. Pugazhenthi, R. Uppaluri. Preparation and characterization of hydrothermally engineered TiO2-fly ash composite membrane[J]. Front. Chem. Sci. Eng., 2017, 11(2): 266-279.
[8] Suvidha Gupta,R. A. Pandey,Sanjay B. Pawar. Microalgal bioremediation of food-processing industrial wastewater under mixotrophic conditions: Kinetics and scale-up approach[J]. Front. Chem. Sci. Eng., 2016, 10(4): 499-508.
[9] Xue Zou,Jin Li. On the fouling mechanism of polysulfone ultrafiltration membrane in the treatment of coal gasification wastewater[J]. Front. Chem. Sci. Eng., 2016, 10(4): 490-498.
[10] Ali SDIRI,Samir BOUAZIZ. Re-evaluation of several heavy metals removal by natural limestones[J]. Front. Chem. Sci. Eng., 2014, 8(4): 418-432.
[11] Gautam SEN, G. Usha RANI, Sumit MISHRA. Microwave assisted synthesis of poly(2-hydroxyethylmethacrylate) grafted agar (Ag-g-P(HEMA)) and its application as a flocculant for wastewater treatment[J]. Front Chem Sci Eng, 2013, 7(3): 312-321.
[12] Haitao ZHANG, Xiaoqing MA, Xian QU, Jeanpierre Arcangeli. Process study on adsorption of glycerin from saline wastewater by strong base anion resin[J]. Front Chem Sci Eng, 2011, 5(1): 113-116.
[13] LIU Xiaoye, DAI Gance. Impregnation of thermoplastic resin in jute fiber mat[J]. Front. Chem. Sci. Eng., 2008, 2(2): 145-149.
[14] ZHONG Li, REN Wei, GUO Wenjing. A pilot scale test of ozonization treatment of ethene wastewater for reuse[J]. Front. Chem. Sci. Eng., 2008, 2(2): 191-195.
[15] LIU Yingxin, WEI Zuojun, CHEN Jixiang, ZHANG Jiyan. Effects of preparation methods of support on the properties of nickel catalyst for hydrogenation of m-dinitrobenzene[J]. Front. Chem. Sci. Eng., 2007, 1(3): 287-291.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed