Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2015, Vol. 9 Issue (1) : 114-123    https://doi.org/10.1007/s11705-015-1507-5
RESEARCH ARTICLE
Reactivity of triacetone triperoxide and diacetone diperoxide: Insights from nuclear Fukui function
Matthew J. SWADLEY1,Panpan ZHOU2,Tonglei LI3,*()
1. Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536, USA
2. Department of Chemistry, Lanzhou University, Lanzhou 730000, Gansu, China
3. Industrial & Physical Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA
 Download: PDF(716 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Triacetone triperoxide (TATP) is more sensitive than diacetone diperoxide (DADP) in the solid-state explosion. To explain this reactivity difference, we analyzed the electronic structures and properties of the crystals of both compounds by using Ab initio method to calculate the structures of their individual molecules as well as their lattice structures and particularly calculating Nuclear Fukui function to gain insight into the sensitivity of the initial, rate-determining step of their decomposition. Our results indicate that TATP and DADP crystal structures exhibit significantly different electronic properties. Most notably, the electronic structure of the TATP crystal shows asymmetry among its reactive oxygen atoms as supported by magnitudes of their nuclear Fukui functions. The greater explosion sensitivity of crystalline TATP may be attributed to the properties of its electronic structure. The electronic calculations provided valuable insight into the decomposition sensitivity difference between TATP and DADP crystals.

Keywords nuclear Fukui function      electronic perturbation      Hellmann-Feynman force      organic crystals      unimolecular decomposition     
Corresponding Author(s): Tonglei LI   
Issue Date: 07 April 2015
 Cite this article:   
Tonglei LI,Matthew J. SWADLEY,Panpan ZHOU. Reactivity of triacetone triperoxide and diacetone diperoxide: Insights from nuclear Fukui function[J]. Front. Chem. Sci. Eng., 2015, 9(1): 114-123.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-015-1507-5
https://academic.hep.com.cn/fcse/EN/Y2015/V9/I1/114
Fig.1  Molecular structures of (a) DADP and (b) TATP. Naming schemes correlate with data in Tables 1 and 2
| Φ α + | | Φ α - |
DADP TATP DADP TATP
Un-norm. Un-norm Normal Un-norm Un-norm Normal
O1 11.0626 6.6656 9.9984 2.9540 2.0688 3.1032
O2 11.0636 6.6693 10.0040 2.9554 2.0644 3.0966
O3 11.0626 6.7167 10.0750 2.9540 2.0543 3.0814
O4 11.0636 6.7023 10.0534 2.9554 2.0576 3.0864
O5 6.6892 10.0338 2.0577 3.0866
O6 6.6892 10.0338 2.0568 3.0852
C1 2.7192 0.9605 1.4408 2.5544 2.4524 3.6786
C2 0.1702 0.4337 0.6506 0.9682 0.2748 0.4122
C3 0.8376 0.4295 0.6442 0.3446 0.2805 0.4208
H1 0.2096 0.1521 0.2282 0.4562 0.1208 0.1812
H2 0.2500 0.1392 0.2088 0.1894 0.1097 0.1646
H3 0.2504 0.5279 0.7918 0.1898 0.0699 0.1048
H4 0.1330 0.1413 0.2120 0.0892 0.1073 0.1610
H5 0.7170 0.1548 0.2322 0.0548 0.1188 0.1782
H6 0.7162 0.5265 0.7898 0.0550 0.0695 0.1042
C4 2.7192 0.9565 1.4348 2.5544 2.4551 3.6826
C5 0.1702 0.4275 0.6412 0.9682 0.2792 0.4188
C6 0.8376 0.4288 0.6432 0.3446 0.2776 0.4164
H7 0.2096 0.1403 0.2104 0.4562 0.1081 0.1622
H8 0.2500 0.1531 0.2296 0.1894 0.1223 0.1834
H9 0.2504 0.5304 0.7956 0.1898 0.0677 0.1016
H10 0.1330 0.1357 0.2036 0.0892 0.1128 0.1692
H11 0.7170 0.1503 0.2254 0.0548 0.1248 0.1872
H12 0.7162 0.5289 0.7934 0.0550 0.0679 0.1018
C7 0.9595 1.4392 2.4459 3.6688
C8 0.4317 0.6476 0.2787 0.4180
C9 0.4303 0.6454 0.2796 0.4194
H13 0.1421 0.2132 0.1059 0.1588
H14 0.1531 0.2296 0.1203 0.1804
H15 0.5300 0.7950 0.0697 0.1046
H16 0.1387 0.2080 0.1101 0.1652
H17 0.1528 0.2292 0.1188 0.1782
H18 0.5277 0.7916 0.0715 0.1072
Tab.1  Nuclear Fukui function magnitudes of atoms in TATP and DADP single molecules calculated in gas phase*
| Φ α + | | Φ α - |
DADP TATP DADP TATP
Un-norm Un-norm Normal Un-norm Un-norm Normal
O1 4.6171 1.2955 4.0650 1.4670 0.5603 1.7580
O2 4.6615 1.2881 4.0417 1.4790 0.5582 1.7516
O3 4.6171 1.1658 3.6582 1.4670 0.6290 1.9737
O4 4.6615 1.1140 3.4956 1.4790 0.6399 2.0079
O5 1.6935 5.3138 0.4759 1.4933
O6 1.6892 5.3006 0.4486 1.4078
C1 1.1264 0.2107 0.6612 1.2880 0.5892 1.8489
C2 0.0947 0.0858 0.2692 0.4410 0.0657 0.2062
C3 0.2108 0.1027 0.3222 0.0377 0.0955 0.2996
H1 0.0413 0.0762 0.2390 0.2350 0.0272 0.0853
H2 0.0616 0.0261 0.0820 0.0708 0.0559 0.1755
H3 0.0658 0.0495 0.1553 0.0600 0.0385 0.1208
H4 0.0299 0.0307 0.0965 0.0314 0.0677 0.2123
H5 0.1586 0.1284 0.4029 0.0137 0.0131 0.0411
H6 0.1687 0.0351 0.1101 0.0144 0.0330 0.1036
C4 1.1264 0.1553 0.4874 1.2880 0.6367 1.9980
C5 0.0947 0.0798 0.2505 0.4410 0.0835 0.2620
C6 0.2108 0.1006 0.3158 0.0377 0.0861 0.2701
H7 0.0413 0.0260 0.0817 0.2350 0.0341 0.1070
H8 0.0616 0.0934 0.2930 0.0708 0.0046 0.0146
H9 0.0658 0.0204 0.0640 0.0600 0.0357 0.1121
H10 0.0299 0.0137 0.0430 0.0314 0.0216 0.0678
H11 0.1586 0.0418 0.1310 0.0137 0.0295 0.0924
H12 0.1687 0.0884 0.2773 0.0144 0.0146 0.0459
C7 0.2404 0.7544 0.6527 2.0481
C8 0.1080 0.3390 0.0809 0.2537
C9 0.0688 0.2159 0.0684 0.2146
H13 0.0447 0.1402 0.0419 0.1313
H14 0.1352 0.4242 0.0158 0.0495
H15 0.0110 0.0345 0.0235 0.0736
H16 0.1040 0.3263 0.0056 0.0177
H17 0.0145 0.0455 0.0288 0.0904
H18 0.0215 0.0676 0.0305 0.0958
Tab.2  Nuclear Fukui function magnitudes of atoms in TATP and DADP crystals*
Fig.2  Vector representations of Φ α + (a, b) and Φ α - (c, d) of DADP single molecule (a, c) and TATP single molecule (b, d). Vector lengths (increasing in size with magnitude) and colors (blue to red in color with increasing magnitude) are scaled to the largest values of a molecule
Fig.3  Vector representations of Φ α + (a, b) and Φ α - (c, d) of DADP (a, c) and TATP (b, d) in their crystals. Vector lengths (increasing in size with magnitude) and colors (blue to red in color with increasing magnitude) are scaled to the largest values of a molecule
Fig.4  Molecular electrostatic potential (MEP) maps of (a) DADP and (b) TATP on the isosurface of electron density (0.001 a.u.). The values of the MEP (a.u.) are marked by the color bar
Fig.5  Highest occupied molecular orbitals (HOMOs) of (a) DADP and (c) TATP single molecules, and lowest unoccupied molecular orbitals (LUMOs) of (b) DADP and (d) TATP
1 Dubnikova F, Kosloff R, Almog J, Zeiri Y, Boese R, Itzhaky H, Alt A, Keinan E. Decomposition of triacetone triperoxide is an entropic explosion. Journal of the American Chemical Society, 2005, 127(4): 1146–1159
2 Oxley J C, Smith J L, Chen H. Decomposition of a multi-peroxidic compound: Triacetone triperoxide (tatp). Propellants, Explosives, Pyrotechnics, 2002, 27(4): 209–216
3 Sanderson J R, Story P R. Macrocyclic synthesis. The thermal decomposition of dicyclohexylidene diperoxide and tricyclohexylidene triperoxide. Journal of Organic Chemistry, 1974, 39(24): 3463–3469
4 van Duin A C T, Zeiri Y, Dubnikova F, Kosloff R, Goddard W A. Atomistic-scale simulations of the initial chemical events in the thermal initiation of triacetonetriperoxide. Journal of the American Chemical Society, 2005, 127(31): 11053–11062
5 Evans H E, Tulleners F A J, Sanchez B L, Rasmussen C A. An unusual explosive, triacetone triperoxide. Journal of Forensic Sciences, 1986, 31(3): 1119–1125
6 White G M. An explosive drug case. Journal of Forensic Sciences, 1992, 37(2): 652–656
7 Politzer P, Murray J S. The fundamental nature and role of the electrostatic potential in atoms and molecules. Theoretical Chemistry Accounts, 2002, 108(3): 134–142
8 Parr R G, Yang W. Density-functional theory of atoms and molecules. New York: Oxford University Press, 1989
9 Parr R G, Yang W T. Density-functional theory of the electronic-structure of molecules. Annual Review of Physical Chemistry, 1995, 46(1): 701–728
10 Kohn W, Becke A D, Parr R G. Density functional theory of electronic structure. Journal of Physical Chemistry, 1996, 100(31): 12974–12980
11 Geerlings P, De Proft F, Langenaeker W. Conceptual density functional theory. Chemical Reviews, 2003, 103(5): 1793–1873
12 DeProft F, Liu S B, Geerlings P. Calculation of the nuclear fukui function and new relations for nuclear softness and hardness kernels. Journal of Chemical Physics, 1998, 108(18): 7549–7554
13 Feynman R P. Forces in Molecules. Physical Review, 1939, 56(4): 340–343
14 Hellmann H. Einfuhrung in die quantencheie. Deuticke, Vienna, 1937
15 Cohen M H, Gandugliapirovano M V, Kudrnovsky J. Electronic and nuclear-chemical reactivity. Journal of Chemical Physics, 1994, 101(10): 8988–8997
16 Luty T, Ordon P, Eckhardt C J. A model for mechanochemical transformations: Applications to molecular hardness, instabilities, and shock initiation of reaction. Journal of Chemical Physics, 2002, 117(4): 1775–1785
17 Pacheco-Londono L C, Primera-Pedrozo O M, Hernandez-Rivera S P. Experimental and theoretical model of reactivity and vibrational detectrion modes of triacetone triperoxide (TATP) and homologues. Proceedings of the SPIE-The International Society for Optical Engineering, 2004, 5617: 190–201
18 Ayers P W. The physical basis of the hard/soft acid/base principle. Faraday Discussions, 2007, 135: 161–190
19 Ghanty T K, Ghosh S K. Correlation between hardness, polarizability, and size of atoms, molecules, and clusters. Journal of Physical Chemistry, 1993, 97(19): 4951–4953
20 Feng S X, Li T L. Understanding solid-state reactions of organic crystals with density functional theory-based concepts. Journal of Physical Chemistry A, 2005, 109(32): 7258–7263
21 Li T L, Feng S X. Study of crystal packing on the solid-state reactivity of indomethacin with density functional theory. Pharmaceutical Research, 2005, 22(11): 1964–1969
22 Hohenberg P, Kohn W. Inhomogeneous electron gas. Physical Review B: Condensed Matter and Materials Physics, 1964, 136(3B): 864–871
23 Guerra M. On the use of diffuse functions for estimating negative electron-affinities with lcao methods. Chemical Physics Letters, 1990, 167(4): 315–319
24 Galbraith J M, Schaefer H F. Concerning the applicability of density functional methods to atomic and molecular negative ions. Journal of Chemical Physics, 1996, 105(2): 862–864
25 De Proft F, Sablon N, Tozer D J, Geerlings P. Calculation of negative electron affinity and aqueous anion hardness using kohn-sham homo and lumo energies. Faraday Discussions, 2007, 135: 151–159
26 Tozer D J, De Proft F. Computation of the hardness and the problem of negative electron affinities in density functional theory. Journal of Physical Chemistry A, 2005, 109(39): 8923–8929
27 Doll K, Saunders V R, Harrison N M. Analytical hartree-fock gradients for periodic systems. International Journal of Quantum Chemistry, 2001, 82(1): 1–13
28 Groth P, Baxter R M, Sletten J, Nielsen P H, Lindberg A A, Jansen G, Lamm B, Samuelsson B. Crystal structure of 3,3,6,6,9,9-hexamethyl-1,2,4,5,7,8-hexa-oxacyclononane (“Trimeric acetone peroxide”). Acta Chemica Scandinavica, 1969, 23(4): 1311– 1329
29 Gelalcha F G, Schulze B, L?nnecke P. 3,3,6,6-Tetramethyl-1,2,4,5-tetroxane: A twinned crystal structure. Acta Crystallographica. Section C, Crystal Structure Communications, 2004, 60(3): 180–182
30 Murray J S, Concha M C, Politzer P. Links between surface electrostatic potentials of energetic molecules, impact sensitivities and c-no2/n-no2 bond dissociation energies. Molecular Physics, 2009, 107(1): 89–97
31 Rice B M, Pai S V, Hare J. Predicting heats of formation of energetic materials using quantum mechanical calculations. Combustion and Flame, 1999, 118(3): 445–458
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed