| 
							
      					 | 
  					 
  					
    					 | 
   					 
   										
    					Stability of Ni/SiO2-ZrO2 catalysts towards steaming and coking in the dry reforming of methane with carbon dioxide  | 
  					 
  					  										
						Bettina Stolze1,Juliane Titus1,Stephan A. Schunk2,Andrian Milanov3,Ekkehard Schwab3,Roger Gläser1,*( ) | 
					 
															
						1. Institute of Chemical Technology, Universität Leipzig, Linnéstr. 3, 04103 Leipzig, Germany 2. hte GmbH, Kurpfalzring 104, 69123 Heidelberg, Germany 3. BASF SE, Carl-Bosch-Straße 38, 67056 Ludwigshafen, Germany | 
					 
										
						 | 
					 
				 
				
				
					
						
							
								
									
		
		 
          
          
            
              
				
								                
													
													    | 
													    	
														 | 
													 
													
													
													
														
															
													
													    | 
													     		                            						                            																	    Abstract  Ni/SiO2-ZrO2 catalysts with Ni loadings of 1 to 13 wt-% were prepared, characterized by elemental analysis, X-ray diffraction, N2 sorption, temperature programmed oxidation, temperature programmed reduction, and tested for their activity and stability in the dry reforming of methane with carbon dioxide at 850 °C, gas hourly space velocity of 6000 and 1800 h–1 and atmospheric pressure. The SiO2-ZrO2 support as obtained through a simple and efficient sol-gel synthesis is highly porous (ABET = 90 m2·g–1, dP = 4.4 nm) with a homogeneously distributed Si-content of 3 wt-%. No loss of Si or formation of monoclinic ZrO2, even after steaming at 850 °C for 160 h, was detectable. The catalyst with 5 wt-% Ni loading in its fully reduced state is stable over 15?h on-stream in the dry reforming reaction. If the catalyst was not fully reduced, a reduction during the early stages of dry reforming is accompanied by the deposition of up to 44 mg·g–1carbon as shown by experiments in a magnetic suspension balance. Rapid coking occurs for increased residence times and times-on-stream starting at 50 h. The Ni loading of 5 wt-% on SiO2-ZrO2 was shown to provide an optimal balance between activity and coking tendency. 
																										     | 
														 
																												
												        														
															| Keywords 
																																																				Ni/SiO2-ZrO2  
																		  																																				synthesis gas  
																		  																																				dry reforming  
																		  																																				coking  
																		  																																				steaming  
																																			  
															 | 
														 
																												
														 																											    														
															| 
																																Corresponding Author(s):
																Roger Gläser   
																													     		
													     	 | 
														 
																																										
															| 
																															Just Accepted Date: 31 March 2016  
																																														Online First Date: 27 April 2016   
																																														Issue Date: 19 May 2016
																														 | 
														 
														 
                                                         | 
														 
														 
														
														
														
												 
												
												
                                                    
													
								             
                                             
            
					            
								            								            
								            								                                                        
								            
								                
																																												
															| 1 | 
															 
														     Havran V, Dudukovic M P, Lo C S. Conversion of methane and carbon dioxide to higher value products. Industrial & Engineering Chemistry Research, 2011, 50(12): 7089–7100
														     														     	 
														     															     		https://doi.org/10.1021/ie2000192
														     															     															     															 | 
																  
																														
															| 2 | 
															 
														     York A P E, Xiao T, Green M L H, Claridge J B. Methane oxyforming for synthes is gas production. Catalysis Reviews, 2007, 49(4): 511–560
														     														     	 
														     															     		https://doi.org/10.1080/01614940701583315
														     															     															     															 | 
																  
																														
															| 3 | 
															 
														     Wender I. Reactions of synthesis gas. Fuel Processing Technology, 1996, 48(3): 189–297
														     														     	 
														     															     		https://doi.org/10.1016/S0378-3820(96)01048-X
														     															     															     															 | 
																  
																														
															| 4 | 
															 
														     Wang S, Lu G Q, Millar G J. Carbon dioxide reforming of methane to produce synthesis gas over metal-supported catalysts: State of the art. Energy & Fuels, 1996, 10(4): 896–904
														     														     	 
														     															     		https://doi.org/10.1021/ef950227t
														     															     															     															 | 
																  
																														
															| 5 | 
															 
														     Rostrup-Nielsen J R, Sehested J, Norskov J K. Hydrogen and syntheis gas by steam and CO2 reforming. Advances in Catalysis, 2002, 47: 65–139
														     														     	 
														     															     		https://doi.org/10.1016/S0360-0564(02)47006-X
														     															     															     															 | 
																  
																														
															| 6 | 
															 
														     Kroll V C H, Swann H M, Mirodatos C. Methane reforming reaction with carbon dioxide over Ni/SiO2 catalyst. Journal of Catalysis, 1996, 161(1): 409–422
														     														     	 
														     															     		https://doi.org/10.1006/jcat.1996.0199
														     															     															     															 | 
																  
																														
															| 7 | 
															 
														     Pakhare D, Spivey J. A review of dry (CO2) reforming of methane over noble metal catalysts. Chemical Society Reviews, 2014, 43(22): 7813–7837
														     														     	 
														     															     		https://doi.org/10.1039/C3CS60395D
														     															     															     															 | 
																  
																														
															| 8 | 
															 
														     Itkulova S S, Zhunusova K Z, Zakumbaeva G D. CO2 reforming of methane over Co-Pd/Al2O3 catalysts. Bulletin of the Korean Chemical Society, 2005, 26(12): 2017–2020
														     														     	 
														     															     		https://doi.org/10.5012/bkcs.2005.26.12.2017
														     															     															     															 | 
																  
																														
															| 9 | 
															 
														     Bitter J H, Seshan K, Lercher J A. Mono and bifunctional pathways of CO2/CH4 reforming over Pt and Rh based catalysts. Journal of Catalysis, 1998, 176(1): 93–101
														     														     	 
														     															     		https://doi.org/10.1006/jcat.1998.2022
														     															     															     															 | 
																  
																														
															| 10 | 
															 
														     Swaan H M, Kroll V C H, Martin G A, Mirodatos C. Deactivation of supported nickel catalysts during the redorming of methane by carbon dioxide. Catalysis Today, 1994, 2(2-3): 571–578
														     														     	 
														     															     		https://doi.org/10.1016/0920-5861(94)80181-9
														     															     															     															 | 
																  
																														
															| 11 | 
															 
														     Liu C J, Ye J, Jiang J, Pan Y. Progresses in the preparation of coke resistant Ni-based catalyst for steam and CO2 reforming of methane. ChemCatChem, 2011, 3(3): 529–541
														     														     	 
														     															     		https://doi.org/10.1002/cctc.201000358
														     															     															     															 | 
																  
																														
															| 12 | 
															 
														     Budiman A W, Song S H, Chang T S, Shin C H, Choi M J. Dry reforming of methane over cobalt catalysts: A literature review of catalyst developent. Catalysis Surveys from Asia, 2012, 16(4): 183–197
														     														     	 
														     															     		https://doi.org/10.1007/s10563-012-9143-2
														     															     															     															 | 
																  
																														
															| 13 | 
															 
														     Benrabaa R, Löfberg A, Rubbens A, Bordes-Richard E, Vannier R N, Barama A. Structure, reactivity and catalytic properties of nanoparticles of nickel ferrite in the dry reforming of methane. Catalysis Today, 2013, 203: 188–195
														     														     	 
														     															     		https://doi.org/10.1016/j.cattod.2012.06.002
														     															     															     															 | 
																  
																														
															| 14 | 
															 
														     Rostrup-Niesen J P. Catalytic Steam Reforming in Catalysis. In: Anderson J R, Boudart M, eds. Catalysis-Science & Technology. Berlin: Springer, 1984, 1–117
														     															 | 
																  
																														
															| 15 | 
															 
														     Sajjadi S M, Haghighi M, Eslami A A, Rahmani F. Hydrogen production via CO2-reforming of methane over Cu and Co doped Ni/Al2O3 nanocatalyst: Impregnation versus sol-gel method and effect of process conditions and promoter. Journal of Sol-Gel Science and Technology, 2013, 67(3): 601–617
														     														     	 
														     															     		https://doi.org/10.1007/s10971-013-3120-8
														     															     															     															 | 
																  
																														
															| 16 | 
															 
														     Al-Fatesh A S, Naeem M A, Fakeeha A H, Abasaeed A E. CO2 reforming of methane to produce syngas over g-Al2O3-supported NiSr catalysts. Bulletin of the Chemical Society of Japan, 2013, 86(6): 742–748
														     														     	 
														     															     		https://doi.org/10.1246/bcsj.20130002
														     															     															     															 | 
																  
																														
															| 17 | 
															 
														     Sutthiumporn K, Maneerung T, Kathiraser Y, Kawi S. CO2 dry-reforming of methane over La0.8Sr0.2Ni0.8M0.2O3 perovskite (M= Bi, Co, Cr, Cu, Fe): Roles of lattice oxygen on CeH activation and carbon suppression. International Journal of Hydrogen Energy, 2012, 37(15): 11195–11207
														     														     	 
														     															     		https://doi.org/10.1016/j.ijhydene.2012.04.059
														     															     															     															 | 
																  
																														
															| 18 | 
															 
														     Han J W, Kim C, Park J S, Lee H. Highly coke-resistant Ni nanoparticle catalysts with minimal sintering in dry reforming of methane. ChemSusShem, 2014, 7: 7451–7456
														     															 | 
																  
																														
															| 19 | 
															 
														     Kang K M, Kim H W, Shim I W, Kwak H Y. Catalytic test of supported Ni catalysts with core/shell structure for dry reforming of methane. Fuel Processing Technology, 2011, 92(6): 1236–1243
														     														     	 
														     															     		https://doi.org/10.1016/j.fuproc.2011.02.007
														     															     															     															 | 
																  
																														
															| 20 | 
															 
														     Gardner T H, Spivey J J, Kugler E L, Pakhare D. CH4-CO2 reforming over Ni-substituted barium hexaaluminate catalysts. Applied Catalysis A, 2013, 455: 129–136
														     														     	 
														     															     		https://doi.org/10.1016/j.apcata.2013.01.029
														     															     															     															 | 
																  
																														
															| 21 | 
															 
														     Roussiere T, Schelkle K M, Titlbach S, Wasserschaff G, Milanov A, Cox G, Schwab E, Deutschmann O, Schulz L, Jentys A, Lercher J A, Schunk S A. Structure-activity relationships of nickel-hexaaluminatesin reforming reactions. Part I: Controlling Nickel nanoparticle growth and phase formation. ChemCatChem, 2014, 6: 1438–1446
														     															 | 
																  
																														
															| 22 | 
															 
														     Roussiere T, Schelkle K M, Titlbach S, Wasserschaff G, Milanov A, Cox G, Schwab E, Deutschmann O, Schulz L, Jentys A, Lercher J A, Schunk S A. Structure-activity relationships of nickel-hexaaluminates in reforming reactions. Part II: Activity and stability of nanostructured nickel-hexaaluminate-based catalysts in the dry reforming of methane. ChemCatChem, 2014, 6: 1447–1452
														     															 | 
																  
																														
															| 23 | 
															 
														     Bhavani G A, Kim W Y, Lee J S. Barium substituted lanthanum manganite perovskite for CO2 reforming of methane. ACS Catalysis, 2013, 3(7): 1537–1544
														     														     	 
														     															     		https://doi.org/10.1021/cs400245m
														     															     															     															 | 
																  
																														
															| 24 | 
															 
														     Titus J, Roussière T, Wasserschaff G, Schunk S A, Milanov A, Schwab E, Wagner G, Oeckler O, Gläser R. Dry reforming of methane wth carbon dioxide over NiO-MgO-ZrO2. Catalysis Today, 2015, doi: 10.1016/j.cattod.2015.09.027
														     															 | 
																  
																														
															| 25 | 
															 
														     Frontera P, Macario A, Aloise A, Antonucci P L, Giordano G, Nagy J B. Effect of support surface on methane dry-reforming catalyst preparation. Catalysis Today, 2013, 218: 18–29
														     														     	 
														     															     		https://doi.org/10.1016/j.cattod.2013.04.029
														     															     															     															 | 
																  
																														
															| 26 | 
															 
														     Rezaei M, Alavi S M, Sahebdelfar S, Liu X M, Qian L, Yan Z F. CO2-CH4 reforming over Nickel catalysts supported on mesoporous nanocrystalline zirconia with high surface area. Energy & Fuels, 2007, 21(2): 581–589
														     														     	 
														     															     		https://doi.org/10.1021/ef0606005
														     															     															     															 | 
																  
																														
															| 27 | 
															 
														     Liang B, Ding C. Thermal shock resistances of nanostructured and conventional zirconia coatings deposited by atmospheric plasma spraying. Surface and Coatings Technology, 2005, 197(2-3): 185–192
														     														     	 
														     															     		https://doi.org/10.1016/j.surfcoat.2004.08.225
														     															     															     															 | 
																  
																														
															| 28 | 
															 
														     Shen R, Shafrir S N, Miao C, Wang M, Lambropoulos J C, Jacobs J D, Yang H. Synthesis and corrosion study of zirconia-coated carboyl iron particles. Journal of Colloid and Interface Science, 2010, 342(1): 49–56
														     														     	 
														     															     		https://doi.org/10.1016/j.jcis.2009.09.033
														     															     															     															 | 
																  
																														
															| 29 | 
															 
														     Peters A, Nouzoori F, Richter D, Lutecki M, Gläser R. Nickel-loaded zirconia catalysts with large specific surface area for high-temperature catalytic applications. ChemCatChem, 2011, 3(3): 598–606
														     														     	 
														     															     		https://doi.org/10.1002/cctc.201000277
														     															     															     															 | 
																  
																														
															| 30 | 
															 
														     Rezaei M, Alavi S M, Sahebdelfar S, Bai R, Liu X M, Yan Z F. CO2 reforming of CH4 over nanocrystalline zirconia-supported nickel catalysts. Applied Catalysis B: Environmental, 2008, 77(3-4): 346–354
														     														     	 
														     															     		https://doi.org/10.1016/j.apcatb.2007.08.004
														     															     															     															 | 
																  
																														
															| 31 | 
															 
														     Cassiers K, Linssen T, Aerts K, Cool P, Lebedev O, Van Tendeloo G, Van Grieken R, Vansant E F. Controlled formation of amine-templated mesostructured zirconia with remarkably high thermal stability. Journal of Materials Chemistry, 2003, 13(12): 3033–3039
														     														     	 
														     															     		https://doi.org/10.1039/b310200a
														     															     															     															 | 
																  
																														
															| 32 | 
															 
														     Ciesla U, Schacht S, Stucky D G, Unger K K, Schüth F. Formation of a porous zirconium oxo phosphate with a high surface area by a surfactant-assisted synthesis. Angewandte Chemie International Edition, 1996, 35(5): 541–543
														     														     	 
														     															     		https://doi.org/10.1002/anie.199605411
														     															     															     															 | 
																  
																														
															| 33 | 
															 
														     Lutecki M, Solcova O, Werner S, Breitkopf C. Synthesis and characterization of nanostructured sulfated zirconias. Journal of Sol-Gel Science and Technology, 2010, 53(1): 13–20
														     														     	 
														     															     		https://doi.org/10.1007/s10971-009-2045-8
														     															     															     															 | 
																  
																														
															| 34 | 
															 
														     Centi G, Cerrato G, D’Angelo S, Finardi U, Giamello E, Morterra C, Perathoner S. Catalytic behavior and nature of active sites in copper-on-zirconia catalysts for the decomposition of N2O. Catalysis Today, 1996, 27(1-2): 265–270
														     														     	 
														     															     		https://doi.org/10.1016/0920-5861(95)00197-2
														     															     															     															 | 
																  
																														
															| 35 | 
															 
														     del Monte F, Larsen W, Mackenzie J D. Stabilization of tetragonal ZrO2 in ZrO2-SiO2 binary oxides. Journal of the American Ceramic Society, 2000, 83(3): 628–634
														     														     	 
														     															     		https://doi.org/10.1111/j.1151-2916.2000.tb01243.x
														     															     															     															 | 
																  
																														
															| 36 | 
															 
														     del Monte F, Larsen W, Mackenzie J D. Chemical interactions promoting the ZrO2 tetragonal stabilization in ZrO2-SiO2 binary oxides. Journal of the American Ceramic Society, 2000, 83(6): 1506–1512
														     														     	 
														     															     		https://doi.org/10.1111/j.1151-2916.2000.tb01418.x
														     															     															     															 | 
																  
																														
															| 37 | 
															 
														     Ho S M. On the structural chemistry of zirconium oxide. Matererials. Science and Engeniering, 1982, 54: 23–29
														     															 | 
																  
																														
															| 38 | 
															 
														     Chuah G K, Jaenicke S. The preparation of high surface area zirconia—influence of precipitating agent and digestion. Applied Catalysis A, 1997, 163(1-2): 261–273
														     														     	 
														     															     		https://doi.org/10.1016/S0926-860X(97)00103-8
														     															     															     															 | 
																  
																														
															| 39 | 
															 
														     Chuah G K, Jaenicke S, Cheong S A, Chan K S. The influence of preparation conditions on the surface area of zirconia. Applied Catalysis A, 1996, 145(1-2): 267–248
														     														     	 
														     															     		https://doi.org/10.1016/0926-860X(96)00152-4
														     															     															     															 | 
																  
																														
															| 40 | 
															 
														     Chuah G K, Jaenicke S, Pong B K. The preparation of high-surface-area zirconia: II. Influence of precipitating agent and digestion on the morphology and microstructure of hydrous zirconia. Journal of Catalysis, 1998, 175(1): 80–92
														     														     	 
														     															     		https://doi.org/10.1006/jcat.1998.1980
														     															     															     															 | 
																  
																														
															| 41 | 
															 
														     Chuah G K, Liu H S, Jaenicke J, Li J. High surface area zirconia by digestion of zirconium propoxide at different pH. Microporous and Mesoporous Materials, 2000, 39(12): 381–392
														     														     	 
														     															     		https://doi.org/10.1016/S1387-1811(00)00189-X
														     															     															     															 | 
																  
																														
															| 42 | 
															 
														     Viinikainen T, Rönkkönen H, Bradshaw H, Stephenson H, Airaksinen S, Reinikainen M, Simell P, Krause O. Acidic and basic surface sites of zirconia-based biomass gasification gas clean-up catalysts. Applied Catalysis A, 2009, 362(1-2): 169–177
														     														     	 
														     															     		https://doi.org/10.1016/j.apcata.2009.04.037
														     															     															     															 | 
																  
																														
															| 43 | 
															 
														     Liu D, Wang Y, Shi D, Jia X, Wang X, Borgna A, Lau R, Yang Y. Methane reforming with carbon dioxide over a Ni/ZiO2SiO2 catalyst: Influence of pretreatment gas atmospheres. International Journal of Hydrogen Energy, 2012, 37(13): 10135–10144
														     														     	 
														     															     		https://doi.org/10.1016/j.ijhydene.2012.03.158
														     															     															     															 | 
																  
																														
															| 44 | 
															 
														     Putz H, Brandenburg K. Match!: Phase Identification from Powder Diffraction, Bonn, Crystal Impact 2003‒2012. 
														     															 | 
																  
																														
															| 45 | 
															 
														     Rodriguez J A, Hanson J C, Frenkel A I, Kim J Y, Perez M. Experimental and theoretical studies on the reaction of H2 with NiO: Role of O vacancies and mechanism for oxide reduction. Journal of the American Chemical Society, 2002, 124(2): 346–354
														     														     	 
														     															     		https://doi.org/10.1021/ja0121080
														     															     															     															 | 
																  
																														
															| 46 | 
															 
														     Kahle L C S, Roussière T, Maier L, Herrera Delgado K, Wasserschaff G, Schunk S A, Deutschmann O. Methane dry reforming at high temperature and elevated pressure: Impact of gas-phase reactions. Industiral & Engeniering Chemistry Research, 2013, 52(34): 11920–11930
														     														     	 
														     															     		https://doi.org/10.1021/ie401048w
														     															     															     															 | 
																  
																														
															| 47 | 
															 
														     Guo J, Lou H, Zheng X M. The deposition of coke from methane on a Ni/MgAl2O4 catalyst. Carbon, 2007, 45(6): 1314–1321
														     														     	 
														     															     		https://doi.org/10.1016/j.carbon.2007.01.011
														     															     															     															 | 
																  
																														
															| 48 | 
															 
														     Bychkov V Y, Tyulenin Y P, Firsova A A, Shafranovsky A E, Gorenberg A Y, Korchak V N. Carbonization of nickel catalysts and its effect on methane dry reforming. Applied Catalysis A, 2013, 453: 71–79
														     														     	 
														     															     		https://doi.org/10.1016/j.apcata.2012.12.006
														     															     															     															 | 
																  
																														
															| 49 | 
															 
														     Pan W, Song C. Using tapered element oscillating microbalance for in situ monitoring of carbon deposition on nickel catalyst during CO2 reforming of methane. Catalysis Today, 2009, 148(3-4): 232–242
														     														     	 
														     															     		https://doi.org/10.1016/j.cattod.2009.09.002
														     															     															     															 | 
																  
																														
															| 50 | 
															 
														     Pompeo F, Nichio N N, Souza M M, Cesar D V, Ferretti O A, Schmal M. Study of Ni and Pt catalysts supported on a-Al2O3 and ZrO2 applied in methane reforming with CO2. Applied Catalysis A, 2007, 316(2): 175–138
														     														     	 
														     															     		https://doi.org/10.1016/j.apcata.2006.09.007
														     															     															     															 | 
																  
																														
															| 51 | 
															 
														     Stagg-Williams S M, Noronha F B, Fendley G, Resasco D E. CO2 reforming of CH4 over Pt/ZrO2 catalysts promoted with La and Ce oxides. Journal of Catalysis, 2000, 194(2): 240–249
														     														     	 
														     															     		https://doi.org/10.1006/jcat.2000.2939
														     															     															     															 | 
																  
																														
															| 52 | 
															 
														     Montoya J A, Romero-Pascual E, Gimon C, Del Angel P, Monzón A. Methane reforming with CO2 over Ni/ZrO2-CeO2 catalysts prepared by sol-gel. Catalysis Today, 2000, 63(1): 71–85
														     														     	 
														     															     		https://doi.org/10.1016/S0920-5861(00)00447-8
														     															     															     															 | 
																  
																														
															| 53 | 
															 
														     Gonzalez-Delacruz V M, Pereniguez R, Ternero F, Holgado J P, Caballero A. Modifying the size of nickel metallic particles by H2/CO treatment in Ni/ZrO2 methane dry reforming catalysts. ACS Catalysis, 2011, 1(2): 82–88
														     														     	 
														     															     		https://doi.org/10.1021/cs100116m
														     															     															     															 | 
																  
																														
															| 54 | 
															 
														     Pohling R. Chemische Reaktionen in der Wasseranalyse. Berlin: Springer-Verlag, 2015
														     															 | 
																  
																														
															| 55 | 
															 
														     San-José-Alonso D, Juan-Juan J, Illán-Gómez M J, Román-Martínez M C. Ni, Co and bimetallic Ni-Co catalysts for the dry reforming of methane. Applied Catalysis A, 2009, 371(1-2): 54–59
														     														     	 
														     															     		https://doi.org/10.1016/j.apcata.2009.09.026
														     															     															     															 | 
																  
																														
															| 56 | 
															 
														     Zhou L, Li L, Wei N, Li J, Basset J M. Effect of NiAl2O4 formation on Ni/Al2O3 stability during dry reforming of methane. ChemCatChem, 2015, 7(16): 2508–2516
														     														     	 
														     															     		https://doi.org/10.1002/cctc.201500379
														     															     															     															 | 
																  
																														
															| 57 | 
															 
														     Fan M S, Abdullah A Z, Bhatia S. Utilization of greenhouse gases through carbon dioxide reforming of methane over Ni-Co/MgO-ZrO2: Preparation, characterization and activity studies. Applied Catalysis B: Environmental, 2010, 100(1-2): 365–377
														     														     	 
														     															     		https://doi.org/10.1016/j.apcatb.2010.08.013
														     															     															     															 | 
																  
																														
															| 58 | 
															 
														     Cai W, Ye L, Zhang L, Ren Y, Yue B, Chen X, He H. Highly dispersed Nickel-containing mesoporous silica with superior stability in carbon dioxide reforming of methane: The effect of anchoring. Materials (Basel), 2014, 7(3): 2340–2355
														     														     	 
														     															     		https://doi.org/10.3390/ma7032340
														     															     															     															 | 
																  
																																										 
								             
                                             
								                                                        
                                            
                                            
								                                                        
								                                                        
                                            
                                            
                                            
								            
												
											    	
											        	 | 
											        	Viewed | 
											         
													
											        	 | 
											        	 | 
											         
											      	
												         | 
												        
												        	Full text 
												          	
												         | 
											        	
												        	
												        	 
												        	
												          	 
												          	
												          	
														 | 
													 
													
												         | 
												         | 
													 
													
												         | 
												        
												        	Abstract 
												          	
														 | 
												        
															
															 
															
															
												         | 
													 
													
												         | 
												         | 
													 
													
												         | 
												        Cited  | 
												        
												        	
												         | 
													 
													
												         | 
												         | 
												         | 
													 
													
													    |   | 
													    Shared | 
													       | 
												  	 
												  	
													     | 
													     | 
													     | 
											  		 
											  		
													    |   | 
													    Discussed | 
													       | 
												  	 
											 
											 
								         
                                        
  
									 | 
								 
							 
						 | 
					 
				 
			
		 |