| 
							
      					 | 
  					 
  					
    					 | 
   					 
   										
    					Validation of polarizable force field parameters for nucleic acids by inter-molecular interactions  | 
  					 
  					  										
						Liaoran Cao1,Hong Ren2,Jing Miao1,Wei Guo1,Yan Li1,Guohui Li1,*( ) | 
					 
															
						1. Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China 2. Department of Ophthalmology, Aerospace Center Hospital, Beijing 100049, China | 
					 
										
						 | 
					 
				 
				
				
					
						
							
								
									
		
		 
          
          
            
              
				
								                
													
													    | 
													    	
														 | 
													 
													
													
													
														
															
													
													    | 
													     		                            						                            																	    Abstract  Modeling structural and thermodynamic properties of nucleic acids has long been a challenge in the development of force fields. Polarizable force fields are a new generation of potential functions to take charge redistribution and induced dipole into account, and have been proved to be reliable to model small molecules, polypeptides and proteins, but their use on nucleic acids is still rather limited. In this article, the interactions between nucleic acids and a small molecule or ion were modeled by AMOEBAbio09, a modern polarizable force field, and conventional non-polarizable AMBER99sb and CHARMM36 force fields. The resulting intermolecular interaction energies were compared with those calculated by ab initio quantum mechanics methods. Although the test is not sufficient to prove the reliability of the polarizable force field, the results at least validate its capability in modeling energetics of static configurations, which is one basic component in force field parameterization. 
																										     | 
														 
																												
												        														
															| Keywords 
																																																				nucleic acid  
																		  																																				polarizable force field  
																		  																																				AMOEBA  
																																			  
															 | 
														 
																												
														 																											    														
															| 
																																Corresponding Author(s):
																Guohui Li   
																													     		
													     	 | 
														 
																																										
															| 
																															Just Accepted Date: 25 April 2016  
																																														Online First Date: 11 May 2016   
																																														Issue Date: 19 May 2016
																														 | 
														 
														 
                                                         | 
														 
														 
														
														
														
												 
												
												
                                                    
													
								             
                                             
            
					            
								            								            
								            								                                                        
								            
								                
																																												
															| 1 | 
															 
														     Kumar G S, Maiti M. DNA polymorphism under the influence of low pH and low-temperature. Journal of Biomolecular Structure & Dynamics, 1994, 12(1): 183–201
														     														     	 
														     															     		https://doi.org/10.1080/07391102.1994.10508096
														     															     															     															 | 
																  
																														
															| 2 | 
															 
														     Ali N, Ali R. High salt and solvent induced Z-conformation in native calf thymus DNA. Biochemistry and Molecular Biology International, 1997, 41: 1227–1235
														     															 | 
																  
																														
															| 3 | 
															 
														     Jones S, van Heyningen P, Berman H M, Thornton J M. Protein-DNA interactions: A structural analysis. Journal of Molecular Biology, 1999, 287(5): 877–896
														     														     	 
														     															     		https://doi.org/10.1006/jmbi.1999.2659
														     															     															     															 | 
																  
																														
															| 4 | 
															 
														     Reinert K E. DNA multimode interaction with berenil and pentamidine; Double helix stiffening, unbending and bending. Journal of Biomolecular Structure & Dynamics, 1999, 17(2): 311–331
														     														     	 
														     															     		https://doi.org/10.1080/07391102.1999.10508364
														     															     															     															 | 
																  
																														
															| 5 | 
															 
														     Levitt M. Computer-simulation of DNA double-helix dynamics. Cold Spring Harbor Symposia on Quantitative Biology, 1983, 47: 251–262
														     														     	 
														     															     		https://doi.org/10.1101/SQB.1983.047.01.030
														     															     															     															 | 
																  
																														
															| 6 | 
															 
														     Tidor B, Irikura K K, Brooks B R, Karplus M. Dynamics of DNA oligomers. Journal of Biomolecular Structure & Dynamics, 1983, 1(1): 231–252
														     														     	 
														     															     		https://doi.org/10.1080/07391102.1983.10507437
														     															     															     															 | 
																  
																														
															| 7 | 
															 
														     Condon D E, Yildirim I, Kennedy S D, Mort B C, Kierzek R, Turner D H. Optimization of an AMBER force field for the artificial nucleic acid, LNA, and benchmarking with NMR of L(CAAU). Journal of Physical Chemistry B, 2014, 118(5): 1216–1228
														     														     	 
														     															     		https://doi.org/10.1021/jp408909t
														     															     															     															 | 
																  
																														
															| 8 | 
															 
														     Perez A, Marchan I, Svozil D, Sponer J, Cheatham T E 3rd, Laughton C A, Orozco M. Refinement of the AMBER force field for nucleic acids: Improving the description of alpha/gamma conformers. Biophysical Journal, 2007, 92(11): 3817–3829
														     														     	 
														     															     		https://doi.org/10.1529/biophysj.106.097782
														     															     															     															 | 
																  
																														
															| 9 | 
															 
														     Soares T A, Hunenberger P H, Kastenholz M A, Krautler V, Lenz T, Lins R D, Oostenbrink C, Van Gunsteren W F. An improved nucleic acid parameter set for the GROMOS force field. Journal of Computational Chemistry, 2005, 26(7): 725–737
														     														     	 
														     															     		https://doi.org/10.1002/jcc.20193
														     															     															     															 | 
																  
																														
															| 10 | 
															 
														     Hart K, Foloppe N, Baker C M, Denning E J, Nilsson L, MacKerell A D Jr. Optimization of the CHARMM additive force field for DNA: Improved treatment of the BI/BII conformational equilibrium. Journal of Chemical Theory and Computation, 2012, 8(1): 348–362
														     														     	 
														     															     		https://doi.org/10.1021/ct200723y
														     															     															     															 | 
																  
																														
															| 11 | 
															 
														     Langley D R. Environmentally dependent molecular dynamic simulations of DNA using the BMS nucleic acid force field. Abstracts of Papers of the American Chemical Society, 1997, 213: 135
														     															 | 
																  
																														
															| 12 | 
															 
														     Langley D R. Molecular dynamic simulations of environment and sequence dependent DNA conformations: The development of the BMS nucleic acid force field and comparison with experimental results. Journal of Biomolecular Structure & Dynamics, 1998, 16(3): 487–509
														     														     	 
														     															     		https://doi.org/10.1080/07391102.1998.10508265
														     															     															     															 | 
																  
																														
															| 13 | 
															 
														     Anisimov V M, Lopes P E M, MacKerell A D. COMP 382-classical CHARMM drude oscillator polarizable force field for nucleic acid bases. Abstracts of Papers of the American Chemical Society, 2007, 234
														     															 | 
																  
																														
															| 14 | 
															 
														     Baker C M, Anisimov V M, MacKerell A D Jr. Development of CHARMM polarizable force field for nucleic acid bases based on the classical drude oscillator model. Journal of Physical Chemistry B, 2011, 115(3): 580–596
														     														     	 
														     															     		https://doi.org/10.1021/jp1092338
														     															     															     															 | 
																  
																														
															| 15 | 
															 
														     Rick S W, Stuart S J. Potentials and algorithms for incorporating polarizability in computer simulations. Reviews in Computational Chemistry, 2002, 18: 89–146
														     															 | 
																  
																														
															| 16 | 
															 
														     Ren P Y, Ponder J W. Polarizable atomic multipole water model for molecular mechanics simulation. Journal of Physical Chemistry B, 2003, 107(24): 5933–5947
														     														     	 
														     															     		https://doi.org/10.1021/jp027815+
														     															     															     															 | 
																  
																														
															| 17 | 
															 
														     Ren P Y, Ponder J W. Temperature and pressure dependence of the AMOEBA water model. Journal of Physical Chemistry B, 2004, 108(35): 13427–13437
														     														     	 
														     															     		https://doi.org/10.1021/jp0484332
														     															     															     															 | 
																  
																														
															| 18 | 
															 
														     Shi Y, Xia Z, Zhang J, Best R, Wu C, Ponder J W, Ren P. The polarizable atomic multipole-based AMOEBA force field for proteins. Journal of Chemical Theory and Computation, 2013, 9(9): 4046–4063
														     														     	 
														     															     		https://doi.org/10.1021/ct4003702
														     															     															     															 | 
																  
																														
															| 19 | 
															 
														     Case D A, Berryman J T, Betz R M, Cerutti D S, Cheatham T E, Darden III T A, Duke R E, Giese T J, Gohlke H, Goetz A W, Homeyer N, Izadi S, Janowski P, Kaus J, Kovalenko A, Lee T S, LeGrand S, Li P, Luchko T, Luo R, Madej B, Merz K M, Monard G, Needham P, Nguyen H, Nguyen H T, Omelyan I, Onufriev A, Roe D R, Roitberg A, Salomon-Ferrer R, Simmerling C L, Smith W, Swails J, Walker R C, Wang J, Wolf R M, Wu X, York D M, Kollman P A. AMBER 2015, University of California, San Francisco
														     															 | 
																  
																														
															| 20 | 
															 
														     PetaChem.  (accessed on <Date>12 Jan, 2015</Date>)
														     															 | 
																  
																														
															| 21 | 
															 
														     Gaussian 09. Wallingford, CT, USA: Gaussian, Inc., 2009
														     															 | 
																  
																														
															| 22 | 
															 
														     Best R B, Zhu X, Shim J, Lopes P E M, Mittal J, Feig M, MacKerell A D Jr. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi(1) and chi(2) dihedral angles. Journal of Chemical Theory and Computation, 2012, 8(9): 3257–3273
														     														     	 
														     															     		https://doi.org/10.1021/ct300400x
														     															     															     															 | 
																  
																														
															| 23 | 
															 
														     Wang J M, Wolf R M, Caldwell J W, Kollman P A, Case D A. Development and testing of a general amber force field. Journal of Computational Chemistry, 2004, 25(9): 1157–1174
														     														     	 
														     															     		https://doi.org/10.1002/jcc.20035
														     															     															     															 | 
																  
																														
															| 24 | 
															 
														     Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, MacKerell A D. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry, 2010, 31: 671–690
														     															 | 
																  
																														
															| 25 | 
															 
														     Yu W B, He X B, Vanommeslaeghe K, MacKerell A D Jr. Extension of the CHARMM general force field to sulfonyl-containing compounds and its utility in biomolecular simulations. Journal of Computational Chemistry, 2012, 33(31): 2451–2468
														     														     	 
														     															     		https://doi.org/10.1002/jcc.23067
														     															     															     															 | 
																  
																														
															| 26 | 
															 
														     Phillips J C, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel R D, Kale L, Schulten K. Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 2005, 26(16): 1781–1802
														     														     	 
														     															     		https://doi.org/10.1002/jcc.20289
														     															     															     															 | 
																  
																														
															| 27 | 
															 
														     Izvekov S, Parrinello M, Burnham C J, Voth G A. Effective force fields for condensed phase systems from ab initio molecular dynamics simulation: A new method for force-matching. Journal of Chemical Physics, 2004, 120(23): 10896–10913
														     														     	 
														     															     		https://doi.org/10.1063/1.1739396
														     															     															     															 | 
																  
																														
															| 28 | 
															 
														     Akin-Ojo O, Song Y, Wang F. Developing ab initio quality force fields from condensed phase quantum-mechanics/molecular-mechanics calculations through the adaptive force matching method. Journal of Chemical Physics, 2008, 129(6):  064108
														     															 | 
																  
																														
															| 29 | 
															 
														     Wang L P, Chen J H, Van TVoorhis. Systematic parametrization of polarizable force fields from quantum chemistry data. Journal of Chemical Theory and Computation, 2013, 9(1): 452–460
														     														     	 
														     															     		https://doi.org/10.1021/ct300826t
														     															     															     															 | 
																  
																														
															| 30 | 
															 
														     Laury M L, Wang L P, Pande V S, Head-Gordon T, Ponder J W. Revised parameters for the AMOEBA polarizable atomic multipole water model. Journal of Physical Chemistry B, 2015, 119(29): 9423–9437
														     														     	 
														     															     		https://doi.org/10.1021/jp510896n
														     															     															     															 | 
																  
																														
															| 31 | 
															 
														     Mackerell A D, Wiorkiewiczkuczera J, Karplus M. An all-atom empirical energy function for the simulation of nucleic-acids. Journal of the American Chemical Society, 1995, 117(48): 11946–11975
														     														     	 
														     															     		https://doi.org/10.1021/ja00153a017
														     															     															     															 | 
																  
																														
															| 32 | 
															 
														     MacKerell A D, Banavali N, Foloppe N. Development and current status of the CHARMM force field for nucleic acids. Biopolymers, 2001, 56(4): 257–265
														     														     	 
														     															     		https://doi.org/10.1002/1097-0282(2000)56:4<257::AID-BIP10029>3.0.CO;2-W
														     															     															     															 | 
																  
																														
															| 33 | 
															 
														     Cornell W D, Cieplak P, Bayly C I, Gould I R, Merz K M, Ferguson D M, Spellmeyer D C, Fox T, Caldwell J W, Kollman P A. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. Journal of the American Chemical Society, 1996, 118(9): 2309–2309
														     														     	 
														     															     		https://doi.org/10.1021/ja955032e
														     															     															     															 | 
																  
																														
															| 34 | 
															 
														     Badawi H M, Forner W, Al-Saadi A A. DFT-B3LYP versus MP2, MP3 and MP4 calculations of the structural stability of azidoketene O=C=CH‒NNN. Journal of Molecular Structure THEOCHEM, 2004, 712(1-3): 131–138
														     														     	 
														     															     		https://doi.org/10.1016/j.theochem.2004.08.047
														     															     															     															 | 
																  
																														
															| 35 | 
															 
														     Badawi H M. MP2, MP3 and MP4 versus DFT-B3LYP energies and vibrational assignments of near-planar carbamoyl azide and ketene. Journal of Molecular Structure, 2008, 888(1-3): 379–385
														     														     	 
														     															     		https://doi.org/10.1016/j.molstruc.2008.01.018
														     															     															     															 | 
																  
																														
															| 36 | 
															 
														     Neese F. The ORCA program system. Wiley Interdisciplinary Reviews. Computational Molecular Science, 2012, 2(1): 73–78
														     														     	 
														     															     		https://doi.org/10.1002/wcms.81
														     															     															     															 | 
																  
																																										 
								             
                                             
								                                                        
                                            
                                            
								                                                        
								                                                        
                                            
                                            
                                            
								            
												
											    	
											        	 | 
											        	Viewed | 
											         
													
											        	 | 
											        	 | 
											         
											      	
												         | 
												        
												        	Full text 
												          	
												         | 
											        	
												        	
												        	 
												        	
												          	 
												          	
												          	
														 | 
													 
													
												         | 
												         | 
													 
													
												         | 
												        
												        	Abstract 
												          	
														 | 
												        
															
															 
															
															
												         | 
													 
													
												         | 
												         | 
													 
													
												         | 
												        Cited  | 
												        
												        	
												         | 
													 
													
												         | 
												         | 
												         | 
													 
													
													    |   | 
													    Shared | 
													       | 
												  	 
												  	
													     | 
													     | 
													     | 
											  		 
											  		
													    |   | 
													    Discussed | 
													       | 
												  	 
											 
											 
								         
                                        
  
									 | 
								 
							 
						 | 
					 
				 
			
		 |